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 Compared with wire ropes, overhead electrical conductors may seem 
relatively simple systems. However, when subjected to wind excitation, they 
undergo so-called Aeolian vibrations, with transverse small amplitude 
displacements corresponding to conductor bending. In such a motion, 
individual wire relative slip is restricted, up to a certain point, by friction 
forces. Thus, beyond a given bending amplitude, microslip occurs at some 
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proposed in the literature, and which are basically stick-slip models based on 
Coulomb’s laws of friction. These models are used to predict bending 
stiffness variation for single or multi-layer strands, be they single-strand 
cables or electrical conductors.  
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INTRODUCTION 
 
 
The effect of bending on overhead electrical conductor strength is a technical problem of ongoing 
interest. It has been described in detail by national (IEEE, CEA) as well as international (Cigré) body 
publications. In particular, the so-called “Orange Book”, published by the Electrical Power Research 
Institute (EPRI), is a comprehensive presentation of current knowledge on this subject. Its first edition 
dating from 1979 (EPRI, 1979), it has been updated in 2006 (with a hard-copy edition in 2009), where 
the Author participated in the revision of its Chapter 3, on conductor fatigue arising from Aeolian 
vibrations (Cloutier et al. 2006). 
 
The objective of the EPRI book being to give quick, practical answers to the question of conductor 
fatigue, calculations are based on the simplest mechanical models available, even when knowing the 
actual behavior is much more complex. Thus, it is of some interest to also develop models that might 
give a deeper insight into the problem. More realistic models are also useful in the interpretation of 
experimental data. 
 
Basic aspects of conductor bending are very similar to those of simple wire ropes. It is thus of no 
surprise that several works relating to these mechanical elements may provide a common approach to 
what can be called “helical strands”. A review of the literature on the available models can be found in 
Cardou and Jolicoeur (1997). This review has been updated, at least with respect to the bending 
problem, by Cardou (2006). It will not be repeated here. 
 
Although there have been more recent contributions (e.g. Hong et al., 2005; Foti et al., 2011), the 
approach on which the present work is based, follows that of Papailiou (1995), with some adjustments. 
It is to be noted Papailiou’s model can be traced back to previous published works on cables, notably 
those of Lehanneur (1949), in France, and Ernst (1933), in Germany. They might be called “Coulomb 
models” as they are based on Coulomb’s laws of friction applied locally along wire contact lines. Here, 
they will be referred as “stick-slip” models. 
 
Other models can be found in the cable literature, which are mainly based on purely elastic and 
geometric considerations (Costello, 1997; Feyrer, 2007). As far as bending is concerned, these models 
are more technically suited to cables wound on pulleys or on drums, that is, small radius (high 
curvature) bending. By comparison, Coulomb models should be considered as more appropriate for so-
called free-bending, which is the general situation for conductors at or near suspension clamps. 
 
In all cases, simplifying hypotheses have to be made. For example, in the Coulomb models, Poisson’s 
ratio effect is generally neglected. The only internal loads acting on a wire cross-section are assumed to 
be the normal force (tension) and the small bending moment arising from the strand curvature. In our 
model, of the six possible internal loads on a wire cross-section, only the normal force plays a role in the 
strand global behaviour (the wire bending moment being a small correction factor). Also neglected, are 
the variations in lay angle arising from the axial load. Such variations are considered negligible in the 
conductor case, in particular for the ACSR (aluminum conductor steel reinforced) because of the steel 
core high stiffness. Wherever possible, numerical applications are used to show the influence of the 
simplifications, and the corresponding Matlab® 1 functions are given. They enable the reader to adapt the 
                                                 
1 MATLAB®  is a registered trademark of The MathWorks, Inc.  
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given examples to other conductors than those selected in this report. In most cases, a Matlab® file is 
given to perform the calculations. 
 
Synopsis 
In Chapter 1, basic formulas for a conductor under pure axial load are derived. A special attention is 
given to an estimation of inter-layer pressure arising from the axial load, as it is assumed to remain 
unperturbed when the conductor is bent. 
 
In Chapter 2, the elementary case of a single-layer conductor under uniform curvature bending is 
considered, where the deformed shape is assumed to be circular. As the strand departs from its initially 
straight state (its axis is assumed to be a straight line), for a large radius of curvature, there is no slip 
between the wires in the layer and the single (“king”) wire core. The strand is assumed to behave as a 
solid. Then, as curvature increases, a slip region initiates in the vicinity of the section neutral axis. It 
propagates towards the upper and lower points of the strand cross-section2. As these upper and lower 
points are reached, slip is complete. If the imposed curvature is increased, the strand bending stiffness 
remains a constant minimum. 
 
In Chapter 3, the model is extended to a multilayer strand. However, simplifications are made. First, as 
we only consider reverse-lay strands, inter-layer contact consists of a large number of points of contact 
between wires, a so-called “trellis contact patch”. On each wire, discrete contact points are replaced by a 
contact line. Also, pressure is assumed to be transferred from one layer to the next, starting from the 
outer one, as if the wires were simple fibers, with no bending stiffness. Bending of the strand is studied 
as in the single-layer case. Starting from the rectilinear state, curvature is increased, giving a circular 
shape of decreasing radius to the strand centerline. Slip starts between the two outer layers and 
propagates along the “contact lines”. At some point, slip may start between the second and third layers 
etc. When slip is complete at every interface, the strand bending stiffness is a minimum. 
 
In Chapter 4, the uniform curvature model is applied to the numerical treatment of a quasi-static free 
bending problem: the taut clamped-clamped conductor under a center transverse force. Results are 
compared with published data for typical conductors. 
 
While the previous chapters deal mostly with the problem of strand bending stiffness, in Chapter 5 the 
question of the maximum bending stress is examined. Comparison is made between theoretical results 
and available published test data. 
 
Matlab

® 
 functions 

In order to give the reader a better idea of the order of magnitude of various quantities yielded by each 
model, each chapter includes a number of numerical examples. For most of these examples, a Matlab®  
function has been written. The scripts of these functions are available on the Dropbox and Sky Drive 
websites. Access will be given to interested readers. Requests should be sent to the author:  
acardou@gmc.ulaval.ca.  
 

                                                 
2 These “ upper” and “ lower” points in the bent strand cross-section are sometimes called “ extrados” and “intrados ” points, 
as they are located, by definition, on the outer and  inner (center of curvature) sides of the strand, as in a wing profile. 
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CHAPTER 1 

 

CONDUCTOR UNDER AXIAL LOAD 

 

 

1.1 GEOMETRICAL PROPERTIES 
 
In this chapter, and in the following ones, only the most common case of circular section wire 
conductors is considered. These conductors are reverse-lay, i.e. stranding takes place in 
alternating directions from layer to layer. All wires in a given layer are identical. However, there 
may be differences from layer to layer in wire material and diameter (such as steel and aluminum 
wires in an ACSR conductor).  
 
The inner-most layer, which contacts the center wire, or “king wire”, is made of six wires. If all 
wires are identical, each following layer has the number of wires of the layer below, plus six. 
However, this rule needs not apply between layers where wire diameters are different (see 
Appendix A). Besides, it will be considered that stranding is compact. This means, in a given 
layer, wires are practically in contact, i.e. they almost fill the available space, with only a small 
gap between wires. 
 
Packing condition 

 
In a conductor, a given layer (i) is made of ni wires of 
diameter di . The layer outside diameter is DOi . A wire 
center line is a circular helix curve wrapped onto a 
cylinder of diameter (DOi-di), which will be called the lay 
cylinder. The lay angle αi is the complementary angle to 
the helix angle. If αi is small enough, as it is in practical 
conductors, a wire section in a plane perpendicular to the 
conductor axis is practically an ellipse. The wire packing 
in the layer is compact if adjacent wires are in contact. 
This occurs for a certain value of αi . Calling hi the length 
of lay of a wire, i.e. the pitch length of the centerline helix, 
one defines a theoretical lay ratio hi/DOi. 
 

In order to have a compact packing, Rawlins (2005) shows that lay angle αi and lay ratio hi/DOi 
must satisfy two non-linear equations. He also indicates the following equation yields a good 
approximation of the lay ratio: 
 

i

2
Oi i 2i

i

h 1

D 1 3 n n
1 tan 1

9 n

π
=

+    π
− −  

   

    (1.1) 

 
For a number of wires from 7 to 36, he finds a maximum difference of 0.3% between the 
theoretical value and the approximate value obtained from Eq. (1.1). This equation does not apply 

 

DOi 

di 

Figure 1. 1 
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to the inner-most layer, with ni = 6. In this case it yields an infinite lay ratio, corresponding to 

i 0α =  deg., i.e. to straight wires.  

 
Preferred lay ratios are given in ASTM standards and are to be used by manufacturers (Rawlins 
2005). 
 
However, from a user point of view, for a given conductor, the number of wires in each layer is 
known, as well as parameters Oi iD and d  . Thus, Eq. (1.1) may be used to obtain the lay ratio for 

each layer. This leads to the pitch hi and to the maximum lay angle αi (corresponding to 
contacting wires). Indeed, for a circular helix, lay angle αi , wrapped on a cylinder of diameter 
(DOi – di), and pitch length hi, one has the well-known formula:  

Oi i
i

i

(D d )
tan

h

π −
α =        (1.2) 

 
 
While actual lay angles are often smaller 
than this value (Rawlins 2005), they are 
not very far from it and this limit value 
will be used in the numerical examples 
when the actual lay angle is not known, 
thus allowing the application of various 
conductor bending models. 
 
 

 
 

Example 1.1 
 
Geometry and material properties of the Bersimis ACSR conductor are given in Appendix A. It is 
made of a 1/6 steel core, with three aluminum layers. In the outer layer, there are 20 wires, 
having a 4.572 mm diameter. The conductor outside diameter is DO1 = 35.05 mm. Using 
Eqs (1.1) and (1.2), determine the maximum value for lay angle α1. Compare with the actual 
value of 14.14 deg. (Appendix A). 
 
Available Matlab® file: Example_1_1.m 
 
Result:  α1max= 16.7 deg. 
 
Since the actual value is smaller than α1max, there is a small gap between the wires belonging to 
this layer. Thus, contact may be considered as a radial contact, between adjacent layers, rather 
than a “circumferential” or “tangential” one between same layer wires as it is assumed in some 
models. 
 
 
 

 

αi 

π(DOi - di)

hi 

Figure 1. 2 
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Inner-most layer 
As seen in Appendix A, the center layer, which is in contact with the core wire, has a non-zero 
lay angle, with equal nominal wire radii. With this kind of geometry, the layer and the core wire 
cannot be in contact. Contact occurs between the wires in the layer (tangential contact). In order 
to have a radial contact, the radius of the core wire has to be slightly larger than the one of the 
layer wires. A condition has been found by Costello (1997) for this radial contact to occur. For 
example, consider the case of the Bersimis ACSR (Appendix A) with c 4r r 1.27 mm= =  and 

4 5.33 deg.α =  Costello’s condition requires c 4r r 1.00652>  for radial contact to occur. Thus, the 

core radius has to be such that cr 1.278>  mm, a 0.65% difference with the given value, which is 

of negligible consequence from the point of view of conductor strength and stiffness. It may have 
some influence on the slip conditions between the core and inner layer wires when the conductor 
is bent. This effect will be neglected, and it will be assumed the core wire diameter is such that 
radial contact is prevailing. 
 
 
1.2 CONDUCTOR UNDER AXIAL LOAD 
 
An axial load T is imposed on a multilayer conductor. The objective is to determine the axial 
force in each wire. Depending on the degree of accuracy being sought, the problem can be rather 
simple or quite complex. A short description of temperature and creep effects is given in Chapter 
2 of EPRI’s Reference Book (EPRI, 2006). Here, however, it will be assumed the wire material is 
elastic linear, and undergoes small deformations, so that conductor geometry parameters (lay 
angles, layer diameters) do not vary appreciably under the imposed load. 
 
Strictly speaking, wires are helical rods (similar to helical springs), whose cross section can be 
subjected to the usual beam internal loads: normal and shear forces, bending and twisting 
moments. Such a complete analysis applied to loaded cables has been given by Costello (1997). 
His analysis is based on Love’s theory of curved rods (Love, 1944). However, when wire 
diameters are small with respect to overall conductor diameter, when lay angles are smaller than 
20° (Ghoreishi et al., 2007) and when the conductor unit extension (its equivalent axial strain) is 
small, which implies a small variation in lay angles, a simpler analysis, such as the one used, 
among others, by Hruska (1951), is justified. In this approximate analysis, the only internal force 
being considered in the equilibrium equations is the normal force on a wire cross section (Fig. 
1.3). When necessary, a small wire bending moment will eventually be introduced independently. 
 
 

αi 
Fi 

Fxi 

Fti 

x 

T T 

 
Figure 1. 3 
 
We call Fi the tension in a wire belonging to layer (i). Its component in the conductor axis 
direction is Fxi . Its component in the conductor cross section is Fti . It is tangent to the circle on 
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which lie the wire centers of layer (i) (the cross section of the lay cylinder). Thus, it is called its 
tangent component. 
 
The total applied force on the conductor is T, parallel to the x-axis. One must have the following 
static equivalence condition: 
 

m

c i i i
i 1

T F n F cos
=

= + α∑       (1.3) 

 
in which : 
 
m : number of layers in the conductor (excluding the core wire) 
ni : number of wires in layer (i) 
αi : lay angle in layer (i) 
Fc : tensile force on core wire 
 
Tangential components Fti yield a non-zero moment with respect to the x axis. When it is not 
balanced, it leads to a possible rotation of the layer. Such rotation is minimized by having 
alternate left and right lay layers (reverse-lay). If the balance is not perfect, and depending on the 
end conditions, there may be a small rotation due to the axial force T. This coupling effect has 
been studied by various authors and a comparative study of their results has been made by 
Jolicoeur and Cardou (1991). Here, this effect will be neglected. 
 
In order to determine the (m+1) forces Fc and Fi , besides the static Eq. (1.3), one has to write m 
axial strain compatibility equations. Calling εx the conductor equivalent unit strain, these 
equations are: 
 

x c xi (i 1 m)ε = ε = ε = �      (1.4) 

 
Using Hooke’s law, they can be written in terms of wire forces Fc and Fi. Indeed, normal stresses 
acting on wire cross sections are: 
 

c c c i i iF A F Aσ = σ =      (1.5) 

 
Young’s Modulus is Ec for the core wire material and Ei for layer (i). In each wire, the 
corresponding axial unit strain is: 
 

c c c c i i i iF E A F E Aε = ε =      (1.6) 

 
Compatibility equations (1.4) are related to unit strain in the conductor x-axis, while equations 
(1.6) apply to wire axis direction. Except for the core wire, these directions make an angle αi. 
Thus the well known kinematics strain transformation (also given by Mohr’s circle), which is 
usually derived for a solid bar under axial load, applies: 
 

2
i xi icosε = ε α       (1.7) 
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Thus, compatibility Eq. (1.4) yields: 
 

i
c 2

icos

ε
ε =

α
       (1.8) 

 
Or, in terms of forces: 
 

c i
2

c c i i i

F F

E A E A cos
=

α
      (1.9) 

 
Each Fi may be expressed in terms of Fc and put in the statics Eq. (1.3), yielding: 
 

m
3c

c c i i i
i 1c c

F
T E A E A cos

E A =

 
= + α 

 
∑     (1.10) 

 
The conductor axial stiffness (AE) is defined as: 
 

m
3

c c i i i i
i 1

(AE) A E n A E cos
=

= + α∑     (1.11) 

 
It can be calculated as soon as conductor geometry and material parameters are known. Once the 
axial stiffness (AE) is known, wire forces can be calculated for a given tensile load T on the 
conductor:  
 

2
c c i i i

c i

A E A E cos
F T F T

(AE) (AE)

α
= =     (1.12) 

 
Corresponding stresses are : 
 

2
c i i

c i

E E cos
T T

(AE) (AE)

α
σ = σ =     (1.13) 

 
Conductor axial stiffness (AE) given by Eq. (1.11) was obtained by Hruska (1951), Lanteigne 
(1985) etc., following different ways. 
 
The EPRI formulas 
In the EPRI Reference Book (2006), lay angles are neglected and conductor axial stiffness is 
calculated as if all wires were parallel to the conductor axis. Indeed, lay angles αi being of the 
order of 10°, factors 2 3

i icos and cosα α  are very close to unity. Eq. (1.13) then reduces to Eqs 

(2.3-6) and (2.3-7) of EPRI (2006). 
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Example 1.2 
 
Consider the case of the Cardinal ACSR, whose parameters are given in Appendix A. An axial 
load T of 25% RTS (Rated Tensile Strength) is applied, which corresponds to T = 37.6 kN. 
Determine the stresses in the core wire and in each layer. Compare with stress values obtained 
from the EPRI formulas, in which the lay angles are neglected (αi = 0°). 
 
Available Matlab® file: Example_1_2a.m 
 
Results:  
Axial stiffness:   (AE) = 3.87 x 107 N.mm2 
Stress in core wire:  σc = 203.97 MPa 
Stress in each layer:   σi= [59.71  60.83  54.74  169.81] MPa 
 
EPRI (2006) equations: 
Axial stiffness:   (AE) = 4.09 x 107 N.mm2 
Stress in core wire:  σc = 193 MPa 
Stress in each layer:   σi= [62.94  63.48  57.21  171.73] MPa 
 
Curved rod model 
It is interesting to compare results obtained with Eqs (1.11) to (1.13) with those obtained from the 
more rigorous curved rod approach of Costello (1997). For this purpose, we consider the simple 
6/1 strand of this author’s Example 3.1, a simple single layer, uniform material strand. Its 
parameters are as follows: 
 
Radius of core wire:   rc = 0.103 in. 
Radius of layer wires:   r1 = 0.101 in. 
Pitch length of lay:   h1 = 9.75 in. 
Material:    E = 28.5 106 psi (steel) 
Applied load:    T = 18,805 lb 
 
Assuming a compact packing (as does Costello), Eq. (1.2) yields a lay angle: α1 = 7.49 deg.  
With zero strand rotation end conditions, stresses obtained by Costello are: σc = 85,500 psi and 
σ1 = 83,700 psi. 
 
Eqs (1.11) to (1.13) have been programmed in the Matlab® file Example_1_2b.m 
 
Results:  
Stresses: 
Current approximate model: σc = 85,193 psi and σ1 = 83,746 psi 
EPRI equations:   σc = σ1 = 83,351psi 
 
Axial stiffness (AE): 
Costello’s curved rod model:  6.27×106 lb.in2 
Current model Eq. (1.11):  6.29×106 lb.in2  
EPRI equations:    6.43×106 lb.in2 
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1.3 PRESSURE BETWEEN LAYERS 
 
It is well known that in a homogeneous, isotropic, bar under axial load, there is no radial stress, 
while in a conductor under tension, there are clenching forces between layers, i.e. forces at 
contact points between wires. They can be explained intuitively since the axial force in each wire 
tends to “straighten up” the helix, and thus induce a decrease of the radius of the lay cylinder. 
Internal layers block this inward radial motion, thus leading to an interlayer pressure. In fact, 
such pressure is already present even before the application of force T because of the stranding 
process. Rawlins (2005) has proposed an evaluation of this residual pressure. 
 
Here, we seek to determine the pressure which is directly related to the axial force T. However, 
this will require a few simplifying hypotheses. Indeed, stranding being alternate, interlayer 
contact is a point-wise contact. Also, if one considers layer (i) and adjacent layers (i-1) (interface 
(i-1)) and (i+1) (interface (i)). One interface (i-1) contact point will be generally located between 
two interface (i) contact points. The wire element of layer (i) which is situated between these two 
contact points can be considered as a small beam element loaded at a number of points (several 
(i-1) layer wires may contact the (i) layer wire between these contact points with layer (i+1)). An 
“exact” calculation of force transmission from one layer to the other would thus be rather 
difficult, and not very useful. 
 
An approximate method is devised by considering, firstly that wires have a negligible bending 
stiffness, and secondly that point contacts are replaced by line contacts. This is equivalent to 
replacing wires by helical fibres whose diameter is negligible compared with the radius of their 
lay cylinder. It is the approach used by Hruska (1952), Lanteigne (1985), Papailiou (1995), and 
Hong et al. (2005). 
 
A model without pressure transmission (Hruska, 1952) 
It applies to the conductor outer layer. One considers a wire is equivalent to a string wound on a 
cylinder whose radius is equal to its center line helix principal radius of curvature (in its 
osculating plane). With a lay angle α1, and a cylinder radius R1, this radius of curvature ρh1 is 
given by: 
 

1
h1 2

1

R

sin
ρ =

α
       (1.14) 

 
With a wire under tension F1, the unit line contact force is given by: 
 

21 1
1 1

h1 1

F F
q sin

R
= = α

ρ
      (1.15) 

 
Example 1.3 
 
Consider again the case described in Example 1.2. Under the given conditions, calculate the 
contact force per unit length on the outer layer wires. 
 
Use Matlab® file Example_1_3.m 
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Result:  q1 = 1.99 N/mm 
 
It is interesting to compare this value with the residual contact force calculated by Rawlins (2005) 
in the case of the Curlew ACSR, which is slightly stronger than the Cardinal ACSR, but with a 
similar structure. For the outer layer, he finds a 0.33 N/mm residual line force. 
 
Model with pressure transmission 
 
 

R2 

dN2 

F1sinα1 

F2sinα2 

F1sinα1 

F2sinα2 

dθ 

L 

A 

B C 

D 

Fi 

Fisinαi 

αi 

 
Figure 1. 4 
 
For inner layers, one has to take into account the clenching pressure exerted by the adjacent outer 
layer. As already indicated, it will be assumed wires can be considered as fibres without any 
bending stiffness. 
 
A conductor element, length L, is considered. It is limited by two radial planes making a small 
angle dϕ, and comprising the outermost layers (i=1 and 2). Because of the tension T on the 
conductor, wires are under tensions Fi (i=1,2). For each wire, the force tangential component, on 
edges AB and CD is Fi sinαi. On each layer (2) wire element there is a radial force dN2. Wire 
diameter is di. (i=1,2). Assuming a compact packing, same layer wires touch each other and the 
number of wires for each layer, over length L, is ki given by: 
 

i
i

i i i

LsinL
k

d sin d

α
= =

α
     (1.16) 

 
Radial equilibrium of the system is given by: 
 

2 2 1 1 1 2 2 2

d d
k dN 2k F sin 2k F sin

2 2

θ θ
= α + α     (1.17) 

 
which yields : 
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2
2 1

2 1 2 2
1 2

d sin
dN F d sin F d

d sin

α
= θ + α θ

α
     (1.18) 

 
One may easily extend this equation to any layer (i) : 
 

2i 1
ji

i j i i
j 1 j i

sind
dN F d sin F d

d sin

−

=

α
= θ + α ϑ

α
∑     (1.19) 

 
which can be written under the more compact form : 
 

2i
ji

i j
j 1 j i

sind
dN F d

d sin=

α
= θ

α
∑       (1.20) 

 
Other expressions can be obtained using the lay length hi of each layer. Assuming again a 
compact packing, when L = hi , Eq. (1.16) yields:  
 

i i i
i

i i i

h h sin
n

d sin d

α
= =

α
      (1.21) 

 
Hence (Papailiou, 1995, his Eq. (3.23) generalized): 
 

i
ji

i j j
j 1 j i

nh
dN sin F d

h n=

= α θ∑       (1.22) 

 
Using Eq. (1.2), lay length hi may be expressed as i i ih 2 R / tan= π α , in which Ri is the radius of 

layer (i) lay cylinder. Thus, Eq. (1.22) yields: 
 

i
j ji

i j j
j 1 j i i

n tanR
dN sin F d

R n tan=

α
= α θ

α
∑      (1.23) 

 
which is the equation found by Hong et al. (2005), with the difference, in their paper, that the 
elementary angle dϕ is taken as dθi , a different value for each layer (apparently, because, in their 
case, the dNi was supposed to apply to elements dsi corresponding to an equal projection ds on 
the strand axis). 
 
From dNi , given by Eq. (1.20), one gets the force per unit length (as measured on the layer (i) 
wire centre line), assuming it is a line contact situation (Lanteigne, 1985): 
 

i i
Ni i

i i

dN dN
q sin

ds R d
= = α

ϕ
     (1.24) 
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2j i
j ji i

Ni j
j 1i i j j

n sindN cos
q F

ds n R cos

=

=

αα
= =

α
∑     (1.25) 

 
However, if one is interested on the effect of forces dNi on the adjacent (i+1) inner layer, it must 
be applied on the corresponding wire elements. The resultant radial force on layers (i) and (i+1) 
are i ik dN  and i 1 ik dN+

′  and the action-reaction principle yields: 

 

i i i 1 ik dN k dN+
′=       (1.26) 

 
From Eq. (1.16): 
 

i 1 i
i i

i i 1

d sin
dN dN

d sin
+

+

α
′ =

α
     (1.27) 

 
and the force per unit length on wire element dsi+1 is obtained as in Eq. (1.24): 
 

i i
Ni i 1

i 1 i 1

dN dN
q sin

ds R d +

+ +

′ ′
′ = = α

ϕ
     (1.28) 

 
yielding: 
 

2i
j ji 1 i i

Ni j
j 1i i 1 i j j

n sind R cos
q F

d R n R cos
+

=+

αα
′ =

α
∑    (1.29) 

 
or else: 
 

i 1 i
Ni Ni

i i 1

d R
q q

d R
+

+

′ =       (1.30) 

 
This equation applies up to interface (m-1), as interface m involves the straight core wire. 
 
Example 1.4 
 
With the same data as in Example 1.2, determine the force per unit length between each layer, 
calculated either on the outer or on the inner layer. 
 
Available Matlab® file: Example_1_4.m 
 
Result:: Niq = [1.9949  4.8776  10.377  26.064] N/mm 

  Niq′ = [2.6579  7.3055  20.849  26.064] N/mm 
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At the interface between layer (4) and core wire, there is of course no difference between Niq  and 

Niq′ . 

 
 
1.4 POINT CONTACT FORCES 
 
Except for the innermost layer, which is in contact with the core wire, all contacts are point 
contacts, rather than line contacts. It is possible to obtain an approximate value of the contact 
forces using the line contact forces given by the above equations. This requires the calculation of 
the distance between these contact points at a given interface. For example, for layer (i), we need 
the distance of contact points with layer (i+1). 
 
One can show (Appendix B) this distance, calculated on the contact helix of layer (i) (on a wire 
outer fiber which is in contact with layer (i+1)), is given by: 
 

Ci i 1
Ci

i 1 i i 1

2 R cos
d

n sin( )
+

+ +

′′π α
=

′ ′′α + α
     (1.31) 

 
where RCi is the radius of the contact cylinder between layers (i) and (i+1), and angles 

i i 1and +
′ ′′α α  are slightly different from the corresponding lay angles as they correspond to the 

wire “fibre” which is on the contact cylinder and not to the centerline (Appendix B). 
 
This is the same equation as the one obtained by Chouinard (1994), except for his using lay 
angles i i 1and +α α  instead of the present i i 1and +

′ ′′α α  (which are measured on the contact 

cylinder). If the difference between lay angles i iand ′α α  is neglected, one gets:  

 

Ci i 1
Ci

i 1 i i 1

2 R cos
d

n sin( )
+

+ +

π α
=

α + α
     (1.32) 

 
A somewhat different expression has been given by Papailiou (1995). In his work, contact point 
distance is measured on the centerlines of either layer (i) or (i+1) (his Eqs (3.1) and (3.2)). Using 
these expressions, one can obtain the distance measured on the contact helix of layer (i): 
 

2
Ci i i 1

Ci
i 1 i i 1 i i i i 1

2 R (1 )cos
d

n (1 )sin cos (1 )sin cos
+

+ + +

π − γ α
=

+ γ α α + − γ α α
   (1.33) 

 
Parameter iγ  is the ratio i i Cir / Rγ = . Eqs (1.32) and (1.33) differ slightly. It can be checked both 

equations are identical if the iγ  ratio tends to zero, i.e. if wire radius ri is small with respect to the 

contact cylinder radius RCi. In multilayer conductors, this may apply only to the outer layers. 
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Example 1.5 
 
Considering the same case as in Example 1.2, determine the distances between contact points at 
interfaces (1,2), (2,3) and (3,4). Compare results obtained with Eqs. (1.31), (1.32) and (1.33). 
 
Use the Matlab® file Example_1_5.m 
 
Results: 
Eq. (1.31) dC = [6.96  6.72  8.33] mm 
Eq. (1.32) dC = [7.09  7.05  8.42] mm 
Eq. (1.33) dC = [9.33  10.14  16.83] mm 
 
Using Eq. (1.32), with the specified lay angles, yields results which are close enough to the 
“exact” value. When the distance between contact points is known, one can determine the normal 
contact forces for a tensile force T on the conductor. 
 
Normal contact force due to the axial load on conductor 
Calling NCi the normal point force at interface contact points between layers (i) and (i+1), one 
gets: 
 

Ci Ni CiN q d=       (1.34) 

 
where qNi is given by Eq. (1.25) and dCi is given either by Eq. (1.31) or its approximate form 
Eq. (1.32). A specialized form of this equation is given by Chouinard (1994). 
 
Example 1.6 
 
Considering the same case as in Example 1.2, and using Eq. (1.32), determine the normal force at 
contact points between layers, that is, interfaces (1,2), (2,3) and (3,4). 
 
The line contact forces have been determined in Example 1.4: q = [1.99  4.86  10.35] N/mm. 
 
From Example 1.3, distances between contact points are: dC = [6.96  6.72  8.33] mm. Thus 
contact forces are given by the simple product of q and dC. 
 
Result:  NC = [13.85  32.66  86.22] N 
 
Obviously, from the action-reaction principle, at a given interface, the normal contact forces have 
to be the same on both contacting layers. 
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CHAPTER 2 

 

BENDING OF A SINGLE LAYER CONDUCTOR  

 

 

2.1 INTRODUCTION 
 
Bending of cables and conductors has been studied for many years (see reviews by Cardou and 
Jolicoeur, 1997; Cardou, 2006) both from the theoretical and experimental point of view. Modelling of 
a conductor in bending is indeed a much more difficult task than modelling its behaviour under pure 
axial load. For this reason, the simpler case of a single layer conductor made of a core wire and a six 
wire layer will be first studied. Two cases are to be considered: 
• Constant radius bending 
• Free bending 
 
Constant radius bending is found with cables or conductors which are wound on a pulley, a roller, a 
drum or a turret. Free bending occurs whenever a taut cable or conductor is transversely loaded, its 
centerline undergoing a transverse displacement without contact with another solid (e.g. case of a 
conductor in the vicinity of a suspension clamp). The resulting deformed centerline has a variable 
curvature, a fact which renders the analysis quite difficult. 
 
For this reason, most of the available published models are based on the constant radius hypothesis, 
while at the same time neglecting the contact forces which have to occur in a real case. Nevertheless, it 
is this approach which will be used here. Firstly, because it leads to explicit results. Secondly, because 
these “simple” results may be used in the free bending case, which is of course more interesting 
technically, at least in conductor applications. 
 
 
2.2 BASIC HYPOTHESES 
 
2.2.1 Contact conditions 
 
Radial contact rather than tangential contact (see Chapter 1) is assumed to prevail between conductor 
wires. When the single layer conductor is under a simple axial load, its axis is a straight line and the 
lines of contact between the core wire and the layer wires are circular helices. It is shown in Appendix 
B that their helix angle is slightly different from the (90°-α) helix angle of the centerline. Here, this 
difference is neglected. The line contact force arising from the axial load T is uniform and has been 
evaluated in Chapter 1. It will be noted q0 . At this stage, the flattening of a wire along the contact 
helix, which yields a narrow contact “strip”, is also neglected. Friction plays an important role in 
conductor bending. It is assumed Coulomb’s law of friction applies. 
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2.2.2 Wire shape in the bent conductor 
 
When a constant curvature ρ is imposed on 
the conductor, the lay cylinder is deformed 
into a circular torus. One may wonder what is 
the shape taken on this torus by a wire 
centerline. With zero bending stiffness wires, 
and with no friction, these centerlines would 
follow the torus geodesic lines. This 
hypothesis has been used by some authors 
(e.g. Baticle, 1912). Another hypothesis is to 
assume the deformed curve, being defined by 
angles φ and θ (Fig. 2.1), is such that φ and θ 
are proportional. In a logical way, this curve is 
sometimes called a “toroidal helix”. This is a 
widely used assumption. Lehanneur (1949) 
has shown such a curve is kinematically 
admissible. When the conductor is rectilinear,  
principal curvature at any point on the helix 
curve is the same. On the torus curve, the 
curvature varies from point to point.  

 
 
Leider (1977) has calculated the curvature variation for both curves, over a pitch length. He has found 
the variation is greater for the geodesic curve than for the toroidal helix. This implies the bending 
deformation energy is larger in the first case than it is in the second case. According to the principle of 
minimum potential energy (at equilibrium), the actual shape of the deformed wire centerline should be 
closer to the toroidal helix than to the geodesic curve.  
 
 
2.3 FRICTIONLESS BENDING BEHAVIOR 
 
A taut single layer conductor under axial tension T is considered. Each wire carries a force FT, with the 
corresponding uniform normal stress σT on its cross section. This conductor is now given a uniform 
curvature 1/κ = ρ  . Here, it is assumed there is no friction so that the helical wires can slip freely on 
the core wire. If taken separately, layer wires and core have a bending stiffness: 
 

w w w c c cB E I B E I= =      (2.1) 

 
With a circular cross section radius r, 4

wI r / 4= π . The conductor minimum bending stiffness is often 

calculated as if all wires were parallel rods (EPRI, 2006): 
 

min1 w cB 6B B= +       (2.2) 

 
If the lay angle α is taken into account, the simplest equation is the one given by Papailiou (1995): 
 

Figure 2. 1 
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min 2 w cB 6B cos B= α +      (2.3) 

 
Eq. (2.3) does not take into account the fact that, when a helical rod undergoes bending (i.e. the axis of 
the cylinder is “bent”), there is a twisting component. The rod material shear modulus should then 
appear in the equation. Equivalently, Poisson’s ratio ν should be a parameter in the Bmin equation. Such 
a calculation was made by Lehanneur (1949), yielding the following expression (for a 6-wire layer): 
 

2
min3 w cB 6B cos 1 sin B

2(1 )

 ν
= α − α + + ν 

    (2.4) 

 
Another expression has been obtained by Costello (1997), considering each wire is an independent 
helical rod (Timoshenko, 1956): 
 

min 4 w c2

2
B 6B cos B

(2 sin )
= α +

+ ν α
     (2.5) 

 
An expression obtained by Lanteigne (1985) can also be mentioned: 
 

3
min5 w cB 6B cos B= α +       (2.6) 

 
Taking Papailiou’s Eq. (2.3) as a reference, each one of the above equations for Bmin may be written as: 
 

min j w j cB (6B cos ) k B= α +       (2.7) 

 
Taking typical values for α and ν, , e.g.  o15 0.3α = ν = , one gets the following kj values: 

 

k1 

EPRI 

(2006) 

k2 

Papailiou 

(1995) 

k3 

Lehanneur 

(1949) 

k4 

Costello 

(1997) 

k5 

Lanteigne 

(1985) 

1.035 1 0.992 0.990 0.933 

Table 2. 1 

 
It is found that the influence of wire twisting stiffness on Bmin is rather small. Thus, in the following, 
Papailiou’s simpler Eq. (2.3) will be used. Considering the number of hypotheses and uncertainties, 
neglecting wire twisting stiffness is a reasonable assumption. 
 
 
2.4 ZERO-SLIP BENDING  
 
It is now assumed there is some friction between the core and the helical wires. In this section, the 
coefficient of friction µ is supposed to be large enough to prevent any slip when the conductor is given 
a uniform curvature κ. 
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In Chapter 1, it was found tension T generates a normal line contact force Nq  . When the curvature is 

imposed starting from zero, slip between core and helical wires is prevented by friction, and a 
tangential line force Frq  is generated. According to Coulomb’s law, the no-slip condition implies that at 

each point on the contact lines, Fr Nq q< µ . Hence, the conductor should behave like a solid beam. The 

Bernoulli-Euler hypothesis is supposed to apply: a plane conductor cross-section remains a plane in the 
bending process. Thus, helical wire cross section center points, initially in the same plane, stay 
coplanar.  
 
It is known this model is merely an approximation. In the actual conductor, the state of stress and strain 
in the contact regions is much more complex than the one in a solid beam. Because of the “tangential 
elasticity” in the contact region, tangential forces qFr lead to small tangential displacements of wire 
section centroid. While this tangential elasticity plays an important role in the analysis of the fatigue 
process (Leblond and Hardy, 2005), it is neglected in the stick-slip models. 
 
Using the Bernoulli-Euler hypothesis, one gets the tension and compression bending forces as they are 
merely proportional to the distance from the conductor section neutral axis.  
 
The complementary bending stiffness (Papailiou, 1995; Lanteigne, 1985), for a six wire layer, is: 
 

2 3
compI w wB 3A E R cos= α      (2.8) 

 
where 2

wA r= π  is the helical wire cross section area. The total bending stiffness of the conductor 

before any slippage occurs must also include the wires own bending stiffness Bmin. Thus the conductor 
maximum bending stiffness is: 
 

max min compIB B B= +       (2.9) 

 
 
Example 2.1 
 
A single layer conductor is made of n=6 helical aluminum wires and a steel core wire (Papailiou, 
1995), whose parameters are as follows: 
 
Core wire:  rc = 1.35 mm  Ec = 210000 MPa 
Layer wires:  r = 1.35 mm  E = 70000 MPa 
Lay cylinder:  R = 2.7 mm 
Lay angle:  α = 10° 
 
Determine the conductor bending stiffnesses Bmin, BcompI, Bmax 
 
Available Matlab® file: Example_2_1.m 
 
Results: 
Ac = Aw = 5.73 mm2 
Ic = Iw = 2.609 mm4 
Bw = 182.6 103 N.mm2 Bc = 547.9 103 N.mm2  
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Eq. (2.3): Bmin = 1626.8 103 N.mm2 
Eq. (2.8): BcompI = 8371.8 103 N.mm2 
Eq. (2.9):  Bmax = 9998.6 103 N.mm2 
 
It is found Bmin << Bmax , which explains why the small differences between the various expressions for 
Bmin (Eqs (2.2) to (2.6)) can be neglected. For example, the simplest equation (2.2), corresponding to 
parallel wires, yields in the present case Bmin = 1643.7 103 N.mm2, a difference of about 1% compared 
with the more exact Eq. (2.3) and a 0.17% difference with respect to Bmax. 
 
One should notice these results depend neither on the axial force T on the conductor, nor on the 
coefficient of friction between core and layer wires. 
 
 
2.5 BENDING IN THE SLIP REGIME 
 
2.5.1 Limit curvatures 
 
In Chapter 1, it was found the axial force T on the conductor induces a uniform line contact force 
between the core and layer wires, which is given by N T hq F= ρ , where FT is the force in each helical 

wire arising from T, and ρh is the helical wire centerline radius of curvature in the osculating plane, 
which is given by 2

h1 sin Rρ = α . When the conductor is bent, the centerline curvature varies from 

point to point, yielding a variation in qN. It is assumed the curvature is small enough allowing the 
variation in qN to be neglected, thus N 0q q≡ . However, the variation of F in a wire because of the 

imposed bending will be considered. For example, above the conductor section “neutral axis”, TF F>  

(Fig. 2.2). 
 

When the imposed curvature is increased, line tangential 
forces between contacting wires also increase. When 
curvature reaches a critical value κb , the limiting value 

Fr lim Nq q q= = µ  is attained at one point on each line of 

contact, and slip starts as soon as bκ > κ . The slip regime 

propagates along each line of contact when curvature is 
increased beyond κb. A detailed analysis of this process, 
based on Coulomb’s law was proposed by Rebuffel (1949) 
and improved by Lehanneur (1949). Their results are 
summarized here for the special case of a single layer 
conductor. 
 
 

 
 
 

Consider one particular wire centerline when it intersects the bending neutral axis at point A0. 
Conductor section centroid is C0. Then, for a section some distance away, the wire centerline is at A1 
on the lay cylinder. Position of A1 is given by angle θ, measured from neutral axis C1y (Fig. 2.2). 
Consider just a half lay length, with / 2 / 2−π ≤ θ ≤ π . As shown in Fig. 2.2, the tensile side (from the 

 
θ 
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Figure 2. 2 
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applied bending), for this particular wire, is assumed to correspond to 0 / 2≤ θ ≤ π , while the 
compression side corresponds to / 2 0−π ≤ θ ≤ . 
 
Lehanneur (1949) shows slip will start at angle θb given by the condition: 
 

btan sinθ = −µ α       (2.10) 

 
which is slightly below the neutral axis. For example, with typical values µ = 0.7 and α = 10°, one 
finds b 6.9θ = − ° . The value of the critical curvature κb at which slip starts is given by: 

 

b T 2 2 2
w

sin

E R cos 1 sin

µ α
κ = σ

α + µ α
    (2.11) 

 
where σT is the normal stress in each helical wire from the applied tension load T. 
 
Because of the uniform curvature assumption, this applies to all wires in the layer thus, when κ reaches 
the limit value κb, slip will start at all wire sections at an angle θb with the neutral axis. On the torus, 
these sections are on a circle which is a parallel of this surface (Fig. 2.3). 

 

 

This also applies to the other half layer, which corresponds to 

b b′θ = π − θ . Since b 0θ < , this is a “parallel” circle with the same 

radius as the θb circle. 
 
 
 
 

When κ is increased beyond κb, there are two slip zones expanding from these two parallel lines. On 
one side of the torus, the slip zone is bounded by two parallels given by 1 bθ < θ  and 2 bθ > θ . The lower 

parallel reaches the “maximum compression”, or “bottom” fibre of the lay cylinder cross section, i.e. 

1 2θ < − π  before the upper one reaches the “top” fibre 2 2θ < + π . Because of the symmetry 

assumption, even if it is in the slip region, there is no wire displacement at 2θ = − π  which means wire 
section displacements take place on both sides of this point towards the bending tension part of the 
wire. Eventually, curvature κ may be such that the upper parallel 2θ = θ  reaches the top fibre 2θ = + π  

The line of contact is everywhere in the slip regime. Total slip occurs for the following curvature: 
 

sin
T

t1 2 sin
w

1 (1 sin )e

E R cos e 1

µπ α

µπ α

σ − − µπ α
κ =

α −
    (2.12) 

 
Rebuffel (1949) obtains a simpler expression by assuming slip boundaries reach simultaneously the 
bottom and top fibres. He finds total slip occurs for a curvature: 
 

 

impending slip 

neutral plane 

Figure 2. 3 



 

21 
 

sin
T

t 2 2 sin
w

e 1

E R cos e 1

µπ α

µπ α

σ −
κ =

α +
      (2.13) 

 
Papailiou (1995) proposes an even simpler expression. It is based on the following hypotheses: a) slip 
always starts on the conductor neutral axis (θ = 0 and π); b) wire stress at those two locations keeps its 
initial, zero curvature, value σT. His expression for slip initiation is then: 
 

b3 T 2
w

sin

E R cos

µ α
κ = σ

α
      (2.14) 

 
And the curvature for total slip is given by: 
 

( )( /2)sinT
t3 2

w

e 1
E R cos

µ π ασ
κ = −

α
    (2.15) 

 
In order to compare the various expressions, slip initiation curvature can be expressed as: 
 

bj T bj2
w

sin
k

E R cos

µ α
κ = σ

α
     (2.16) 

 
In the same fashion, total slip curvature can be written as: 
 

T
tj tj2

w

k
E R cos

σ
κ =

α
      (2.17) 

 
Using the typical values: 10 0.7α = ° µ = , one gets: 
 

j= 
1 

(Lehanneur, 1949) 

2 

(Rebuffel, 1949) 

3 

(Papailiou, 1995) 

kbj 0.993 0.993 1 

ktj 0.203 0.189 0.210 

Table 2. 2 

These results indicate that, with respect to Lehanneur’s (j = 1) more rigorous, albeit more complex, 
model, values obtained with both simpler models (j = 2 and 3) differ at most by a few per-cent. 
 
 
Example 2.2 
 
The same conductor as in Example 2.1 is considered, with the following parameters: 
Coefficient of friction: µ = 0.7 
Stress from axial load T : σT = 10 MPa 
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Determine the curvatures corresponding to slip initiation and to total slip. Compare results given by 
each one of the above three models: 1) Lehanneur’s; 2) Rebuffel’s; 3) Papailiou’s. 
 
Available Matlab® file: Example_2_2.m 
 
Results: 
From Eq. (2.11):  b1 b11 151.9 mρ = κ =  and b2 b1 151.9 mρ = ρ =  

From Eq. (2.14):  b3 b31 150.8 mρ = κ =  

From Eq. (2.12):  t1 t11 90.3 mρ = κ =  

From Eq. (2.13):  t2 t21 97.2 mρ = κ =  

From Eq. (2.15):  t3 t31 87.1 mρ = κ =  

 
The corresponding radii of curvature, even for total slip, are much larger than the conductor outer 
diameter (8.1 mm). This, in a way, justifies the assumption that wire curvature remains practically a 
constant in the bending process. 
 
2.5.2 Bending moment 
 
The next step is to determine the bending moments which have to be imposed on the conductor in order 
to attain these limit curvatures. 
 
As long as κ < κb, there is no slip, and the conductor is assumed to behave as a solid beam (called 
domain (I) of behaviour). The corresponding bending moment is given by the usual expression: 
 

I maxM B= κ        (2.18) 

 
in which bending stiffness Bmax is given by Eq. (2.9).  
 
For κ > κb, slip occurs over a bounded domain of each contact line. Because of the imposed curvature, 
normal force on a wire cross section is a function F(θ). In the no-slip region, F is calculated according 
to the usual Bernoulli-Euler beam bending theory, which yields a simple sine function. In a slip region, 
this force becomes an exponential function whose exact form depends on the selected slip model. 
Taking the simplest one (Papailiou, 1995), it is given by: 
 

sin
L TF F F eµθ α= =       (2.19) 

 
It will be noted the normal force at this location along the wire centerline becomes a constant, 
independent of the conductor curvature. This is because the variation in local wire curvature is 
neglected. As found in Example 2.2, this is a quite reasonable simplification. Thus, in the slip region, 
normal force F is equal to the local limit value at which slip initiates. 
 
This normal force includes the zero curvature normal force FT, due to tension T on the conductor. The 
component of F due to bending, which we call the complementary force, Fcomp is given by: 
 

( )sin
comp TF F e 1µθ α= −       (2.20) 
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With Papailiou’s assumptions, force F in the slip region, is lower than the ideal beam value on sections 
located on the tension side (above the neutral axis), and conversely, it is higher on sections located on 
the compression side. As one would expect, as far as stress is concerned, slip dampens the bending 
effect. 
 
If, at a certain location, wire (i) is in the slip regime, then its normal force Fi contributes a moment with 
respect to the neutral axis which is given by: 
 

( )i sin
i T iM F e 1 R sin cosµθ α= − θ α      (2.21) 

 
where Rsinθi is the distance of wire (i) centerline from conductor neutral axis at this location. The cosα 
term comes from the angle force F makes with the conductor axis. 
 
It is still possible to express the bending moment vs curvature relationship as in Eq. (2.18). However, 
bending stiffness B is itself dependent on κ, and the (M vs κ) relationship is non-linear. 
 
Rather than considering partial slip, with stick and slip regions, it is more interesting to study the limit 
case where slip is complete (total), with curvature κt. Beyond this value, tension F in each wire is a 
constant and the complementary moment is also a constant. It is the residual moment of friction Mrf. 
Only the moment coming from each wire bending stiffness Bw (Eq. (2.1)) continues to increase linearly 
with curvature κ. 
 
Residual moment Mrf depends on the selected bending model. 
 
Lehanneur’s model (1949) yields: 
 

i
sin 3 ( )sin

T 2
rf1 isin

i 1

4RF cos e
M e sin

1 e

πµπ α
−µ −θ α

µπ α
=

α
= θ

+
∑    (2.22) 

 
in which summation is carried over wires located on the half circle i2 2−π ≤ θ ≤ + π . There is a factor 

2 in order to take into account the moment arising from the wires on the other half-circle. 
 
With Papailiou’s model (1995), the residual moment is given by: 
 

( )i

3
sin

rf 2 T i
i 1

M 2RF cos e 1 sinµθ α

=

= α − θ∑     (2.23) 

 
The simpler expression (2.23) comes from the already stated simplifying hypotheses: slip always starts 
at the neutral axis and wire force at this point remains equal to FT. The following numerical example 
will show to what extent they differ. 
 
Example 2.3 
 
Using the data of Example 2.2, determine the residual bending moment Mrf as derived from 
Lehanneur’s and Papailiou’s models.  
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The calculation will be performed for a conductor section at which the half-circle wire centroid 
positions are: 0°, +60°, -60°. 
 
Available Matlab® file: Example_2_3.m 
 
Results: 
From Eq. (2.22):  Mrf1 = 66.1 N.mm 
From Eq. (2.23):  Mrf2  = 67.3 N.mm 
 
Beyond complete slip curvature κt , called domain (II), total moment on the section is: 
 

II min rfM B M= κ +       (2.24) 

 
An equivalent secant bending stiffness can be defined in domain (II). It is given by: 
 

II min rfM B( ) B M= κ κ = κ +      (2.25) 

 
which yields: 
 

rf
min

M
B( ) Bκ = +

κ
      (2.26) 

 
Example 2.4 
 
Consider the same conductor as in preceding examples. Results from Papailiou’s model are 
summarized below: 
 

6 2 6 2
min max

6 1 5 1
d t

rf

B 1.6268 10 N.mm B 9.9986 10 N.mm

6.63 10 mm 1.15 10 mm

M 67.3 N.mm

− − − −

= × = ×

κ = × κ = ×

=

 

 
Available Matlab® file: Example_2_4.m 
 
From these data, the B(κ) curve can be drawn, except in the partial slip domain (Fig. 2.4). Here, it is 
sufficient to draw some approximate connecting curve between the Bmax plateau and the B(κ) curve 
given by Eq. (2.26). 
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Figure 2. 4 

 
Also of interest is the (M vs κ) curve. Its general shape is shown in Figure 2.5. 

 
In domain (I), it is a straight line, slope Bmax 
(Eq. 2.18). In domain (II), it is also a straight line, 
slope Bmin which starts at the total slip point (κt, Mt). 
It intersects the vertical axis at ordinate point Mrf, 
the residual friction moment (Eqs (2.22) or (2.23)). 
Joining these two straight lines, there is a transition 
curve corresponding to the partial slip regime. 
 
As suggested by Papailiou (1995), it is simpler to 
eliminate the non-linear part of the (M vs κ) diagram 
and replace it with a bilinear one (Fig. 2.6). 
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Curvatures κb and κt are then replaced with a median transition curvature κm which corresponds to the 
point of intersection of domains (I) and (II) straight lines. The corresponding median transition moment 
is Mm. Then, the transition domain reduces to a single transition point A. 
 

Point A being the point of intersection of the 
straight lines given by Eqs (2.18) and (2.25), 
median curvature κm is given by: 
 

max m min m rfB B Mκ = κ +   (2.27) 

 
Yielding: 
 

rf rf
m

max min compI

M M

B B B
κ = =

−
  (2.28) 

 
 
 
 
 
 

Figure 2. 6 

 
Recall that BcompI is the complementary stiffness in the no-slip regime (domain (I)), and is given by 
Eq. (2.8). Using the simpler form of residual moment Mrf given by Eq. (2.23), one gets the following 
expression for κm: 
 

( )i

3
sin

i
T i 1

m 2

e 1 sin
2

3 R cos

µθ α

=

− θ
ε

κ =
α

∑
    (2.29) 

 
in which εT is the wire unit strain from axial load T. 
 
Corresponding moment Mm is given by: 
 

max
m max m rf

max min

B
M B M

B B
= κ =

−
    (2.30) 

 
If one lets max B minB k B=  : 

 

B
m rf

B

k
M M

k 1
=

−
      (2.31) 
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Considering a typical point C, such that mκ > κ , stiffness B(κ) as defined in Eq. (2.26) is the slope of 

straight line OC, and is called the “secant stiffness” at this particular point. Tangent stiffness at C is the 
slope of straight line AC, i.e. Bmin. As seen in Fig. 2.6, and in Fig. 2.4, as κ → ∞ , then minB( ) Bκ →  

 
Example 2.5 
 
Consider the same conductor as in preceding examples, with the same initial stress σT = 10 MPa. 
Determine the median values κm and Mm. Draw the curves representing curvatures κb, κt and κm vs. σT. 
 
Available Matlab® file: Example_2_5.m 
 
Recall the preceding results: 
Example 2.1 :  6 2 6 2

max minB 9.9986 10 N.mm B 1.6268 10 N.mm= × = ×  

 
Thus, max min BB 6.15B k 6.15= =  

 
Example 2.4 :  rfM 67.3 N.mm=  

 
Hence, from Eq. (2.28) : 6 1

m 8.03 10 mm− −κ = ×  and from Eq. 2.31 : mM 80.4 N.mm=  

 
Curvatures κd, κt et κm are all proportional to σT (see Eqs (2.14), (2.15), (2.29)). 
 

 
 

Limit curvatures: κd = kapd ;  κm = kapm ; κt = kapt 

Figure 2. 7 
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2.5.3 Note on the calculation of residual friction moment Mrf 
 
Mrf is obtained from Eqs (2.22) and (2.23). This requires positioning each wire centroid by its angle θi. 
Calculations have been made using one particular configuration in which two wires are centred on the 
conductor “neutral axis”. Such sections are at a distance h/6 from each other. For intermediate sections, 
one should add some angle ∆θ such that 0 3< ∆θ < π . This would modify slightly the value of Mrf. In 
fact, Mrf is not a constant but, rather, a periodic function along the conductor axis, period h/6. The 
maximum is reached when the top wires reach the top of the section, a rotation of 30°. For the case of 
Example 2.3, Papailiou’s residual moment becomes 83.5 N.mm (compared with 67.3 N.mm in the 
initial position). 
 
Physically, this indicates that in the total slip regime (domain II), the total moment which must be 
imposed on the conductor to obtain a constant curvature varies from section to section. In terms of 
Strength of Materials, this variable moment will need some shear force, which could come from 
transverse forces on the conductor, such as reaction forces coming from a pulley.  
 
However, the objective of studying a single layer conductor is to introduce concepts which can be used 
in multilayer conductors. In such conductors, the number of wires in the outer layer may be much 
larger than 6, as it is in the single layer. For example, with a 30 wire layer, the angular difference 
between wires is 12°, and the variation in Mrf becomes negligible. Thus, as in Lehanneur (1949) and 
Papailiou (1995), Mrf will be considered a constant. 
 
 
2.6 RHEOLOGICAL MODEL OF A STRAND IN BENDING (see Appendix C) 
 
The (M vs κ) diagram in Fig. 2.6 shows the bending behaviour of the single layer conductor is similar 
(or analogous) to the stress-strain behaviour of some materials. Indeed, materials showing an elastic 
domain, a yield stress, and a subsequent strain hardening domain are often represented by a simple 
bilinear model, which leads to a stress-strain diagram similar to the diagram in Fig. 2.6. Such a bilinear 
model is often represented by a rheological system which is constituted by linear springs and frictional 
slider elements which are put in series or in parallel (Dowling, 1993). These elements are symbolically 
sketched as in Fig. 2.8. 
 

σ

E

σ

εε Sy

 

Figure 2. 8 

  

For a material under stress σ, which leads to strain ε, the element parameter is its Young’s modulus E. 
In the frictional slider element, which is a stick-slip element, it is rigid up to its yield stress Sy, ySσ < ,  

at which point there is slip, with the applied stress remaining constant and equal to Sy. Strain  ε is then 
undetermined. 
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For a conductor in bending, the analogy between parameters is as follows: 
 

y mM E K S Mσ → ε → κ → →  

 
Parameter K is a bending stiffness which may or may not be equal to B. Thus, the elements of the 
rheological model are: 
 

 
M 

K 

M 

κ κ Mm 

 

Figure 2. 9 

 
The bilinear diagram shown in Fig. 2.6 can be obtained with the spring-slider arrangement of Fig. 2.10. 
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Figure 2. 10 

 
Thus, the state equations are: 
 

m
0

m m
m e p

0 1

M
M M

K

M M M
M M

K K

< κ =

−
≥ κ = + = κ + κ

     (2.31) 

 
For small curvature, conductor has a linear elastic behaviour which comes entirely from spring element 
(SP0). Slope of (M vs κ) diagram is K0 = Bmax. When M = Mm, incipient slip occurs in slider (SL1), 
which allows spring (SP1) to elongate. Total curvature κ has two components, one, κe, coming from 
element (SP0), and the other, κp, from element (SP1). Curvature κe is the “elastic” component, as it is 
reversible: it is brought back to zero when moment M is reversed to zero (unloading of conductor in 
bending). Curvature κp is a “permanent” curvature when M = 0. It is easily shown that the slope of the 
“strain hardening” line, which is B1 = Bmin (Eq. (2.25)) is related to stiffness K1 of spring element (SP1) 
by: 
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min 1 0 1

1 1 1 1

B B B K
= = +        (2.32) 

 
from which one gets spring (SP1) stiffness: 
 

1 0 min max
1

0 1 max min

B B B B
K

B B B B
= =

− −
      (2.33) 

 
Example 2.6 
 
Consider the same conductor as in preceding examples, with the same initial stress σT = 10 MPa. It is 
to be modelled using the three-element rheological model of Fig. 2.10. Determine the corresponding 
parameters. 
 
Available Matlab® file: Example_2_6.m 
 
Results: 
Spring (SP0) : stiffness 6 2

0 maxB B 9.9986 10 N.mm= = ×  

Spring (SP1) : stiffness 6 2
1K 1.9429 10 N.mm= ×  

Slider (SL1) : slip limit 6 1
m m m maxM 80.4 N.mm M B 8.04 10 mm− −= κ = = ×  

 
An advantage of using this rheological model is the easy recovery of various properties in load-unload-
load cycles which have been described by Papailiou (1995) through an ad hoc approach. 
 
a) Elastic cycle 
 

The strand is loaded in bending up to M > Mm , 
corresponding to point B on the (M vs κ) diagram. Then, 
bending moment is decreased slightly of ∆M. Such 
decrease comes entirely from spring (S0), with its stiffness 
Bmax. Indeed, frictional slider (SL1) prevents any reversal 
in the extension of spring (SP1) as long as mM 2M∆ ≤ . 

Thus, curvature variation can only come from spring 
(SP0). The resulting unloading curve is thus a straight line 
which is parallel to the loading curve OA, slope Bmax, and 
corresponds to a curvature variation maxM B∆κ = ∆  

 
As a practical application, consider small amplitude 

vibrations of a taut conductor which has undergone an initial static bending. For these small variations 
in the bending moment, it is the bending stiffness Bmax which must be considered. Because of the 
tangential elasticity at contact points, this is not quite true. However, here we restrict the analysis to the 
usual stick-slip Coulomb’s law between rigid solids.  
 
The stiffness which applies to small load-unload cycles is quite different from the secant stiffness as 
defined by Eq. (2.26), which is the slope of line OC in Fig. 2.6. 
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b) Hysteresis cycle 
 

Consider now a load-unload-reload cycle for which mM 2M∆ > . 

The resulting variation in curvature is m2∆κ > κ . Such cycle will 

bring a reverse slip of frictional slider (SL1). Physically, this 
corresponds to a reverse slip of the helical wires on the core wire, 
and to some energy dissipation which is represented by the area of 
the cycle in Fig. 2.12. 
 
 
 
 
 
 

 

 

Example 2.7 
 
Consider the same conductor as in preceding examples, with the same initial stress σT = 10 MPa. It 
undergoes a curvature cycle of amplitude ∆κ = 2 10-5 mm-1. Using the preceding rheological model, 
determine the dissipated energy ∆U at each cycle (per unit length of conductor). 
 
This energy is given by the area of the parallelogram such as the one shown in Fig. 2.12. 
 
Available Matlab® file:  Example_2_7.m 
 
Result:: 3U 1.6 10 N (or mJ / mm)−∆ = ×  
 
 
2.7 FURTHER REMARKS 
 
2.7.1 Variation of wire curvature 
 
As already mentioned, slip limit is based on the line contact force, which is determined from wire 
tension F and local wire curvature. When the conductor is straight and wire centerline a true helix 
curve, this curvature is uniform (it has the same value everywhere along the wire). When the conductor 
is bent, local curvature varies from point to point. Lehanneur (1949) and Papailiou (1995) neglect this 
variation and consider the radius of curvature (in the osculating plane) remains equal to the initial value 

2
h R sinρ = α . The variation in wire curvature has been considered by authors who were mostly 

interested in the calculation of bending stresses (such as the ones arising from winding a cable on a 
pulley), and in situations where friction is neglected. Leider (1975) has published a comparative study 
of the variation of wire curvature. 
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2.7.2 Free bending – variable strand curvature 
 
Conductors are generally in a state of free bending rather than forced bending such as found in cables 
wound around pulleys or drums. In conductors, forced bending occurs at suspension clamps when the 
clamp keeper forces the conductor into the clamp.  
 
Cable free bending, taking friction forces into account, has been studied by Ernst (1933) in the context 
of ropeway applications. However, with variable cable curvature, the analysis does not lead to explicit 
results, such as those obtained with the uniform curvature hypothesis. 
 
Rather than going directly to the variable curvature case using an analytical approach, it seems more 
practical to use Papailiou’s approach (1995) which consists in starting with a uniform curvature 
analysis, leading to explicit results, followed by a numerical extension to the variable curvature case. 
This is the approach used in the following chapters. 
 



 

33 
 

CHAPTER 3 

 

BENDING OF A MULTILAYER CONDUCTOR  

 
 
3.1 HYPOTHESES 
 
Here, the cases under study are restricted to ordinary multilayer conductors with circular section wires 
and reverse lay. In a given layer, wires are identical, with the same radius and material, either steel or 
aluminum.  
 
A conductor is made of m layers, numbered starting from the outer layer, which is always layer (1), to 
the innermost layer, layer (m), in contact with the core wire. In layer (i), there are ni wires, with cross-
section radius ri. Initially, the wire centerline is a circular helix with lay angle αi and lay cylinder radius 
Ri. Assumptions made for a single layer conductor still hold. 
 
3.1.1 Contact conditions 
 
It is assumed again that contact between wires is radial, i.e. between adjacent layers. This means 
possible contact between same layer wires can be neglected when studying a conductor bending 
behaviour. Because of the reverse lay, contact between layers is a “trellis” of contact points, except for 
layer (m) which is in line contact with the core wire. 
 
It is also assumed the contact fibre on a wire, on which contact points with the adjacent layer are 
located, has the same lay angle αi as the wire centerline, even if the radius of the contact cylinder is 
different. Contact forces are now point forces except for layer (m). Normal force NCi between layers (i) 
and (i+1) depend on the applied axial force T. As shown in Chapter 1, its value depends not only on the 
wire tension force Fi, but also on the clenching pressure from layers (i-1), (i-2) etc. Also neglected, in 
this chapter, is the flattening in the contact zones, which gives an elliptical contact, instead of a point 
contact, or a strip contact rather than a line contact. Friction forces between wires (including core wire) 
are assumed to follow Coulomb’s law. 
 
3.1.2 Wire shape in a bent conductor 
 
In a bent conductor, when a radius of curvature ρ is imposed to the conductor centerline, wire 
centerlines are curves on a torus with a cross section radius Ri. These curves are again assumed to be 
“toroidal helices” as defined in the single layer case (Chapter 2). 
 
 
3.2 NO-FRICTION CASE 
 
Assuming a zero coefficient of friction, wires are free to bend with respect to their own individual 
neutral axis. Global conductor bending stiffness is a minimum. It is calculated in the same fashion as in 
the single layer case. Thus, Eqs (2.2) to (2.5) are easily generalized. For example, Papailiou’s Eq. (2.3), 
in which wire torsion is neglected, yields: 
 

m

min i w,i i c
i 1

B n B cos B
=

= α +∑      (3.1) 
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where Bw,i is a single wire bending stiffness in layer (i): 
 

4
i

w,i i i i

r
B E I with I

4

π
= =     (3.2) 

 
 
3.3 ZERO-SLIP BENDING 
 
As in the single layer case, it is assumed there is some friction between wires in contact. Here, the 
coefficient of friction µ is assumed to be large enough to prevent any slip when the conductor is 
imposed a uniform curvature κ. 
 
Then, the conductor should behave like a solid beam. The Bernoulli-Euler hypothesis is supposed to 
apply: a plane conductor cross-section remains a plane in the bending process. Thus, helical wire 
section center points, initially in the same plane, stay coplanar. Conductor bending stiffness takes its 
maximum value Bmax . It is given by: 
 

max min compIB B B= +        (3.3) 

 
Complementary bending stiffness BcompI is given by Eq. (2.8) generalized as: 
 

m
2 3i

compI i i i i
i 1

n
B A E R cos

2=

= α∑      (3.4) 

 

in which the identity 
in

2
k i k 1 k i

k 1

sin n 2 with 2 n+
=

ϕ = ϕ − ϕ = π∑  for any layer (i) has been used (see 

proof in Appendix B). 
 
Example 3.1a 
 
Parameters of conductor Bersimis ACSR are given in Appendix A. 
Determine its bending stiffnesses Bmin, BcompI et Bmax . 
 
Available Matlab® file: Example_3_1.m : 
 
Results: 
From Eq. (3.1):  6 2

minB 63.48 10 N.mm= ×  

From Eq. (3.4):  9 2
compIB 3.4198 10 N.mm= ×  

From Eq. (3.3):  9 2
maxB 3.4832 10 N.mm= ×  

 
Note that BcompI is the main contributing term in Bmax. Ratio between maximum and minimum bending 
stiffness is : max minB / B 54.9= , or approximately 55. 
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When lay angles are neglected (parallel straight wires), the following “approximate” values are 
obtained: 
 

6 2 9 2
min,ap max,apB 65.02 10 N.mm B 3.7865 10 N.mm= × = ×  

 
The error on Bmax is seen to be of an order of magnitude larger than Bmin itself. 
 
Example 3.1b 
 
Parameters of conductor Cardinal ACSR are given in Appendix A. 
Determine its bending stiffnesses Bmin, BcompI et Bmax . 
 
Available Matlab® file: Example_3_1.m : 
 
Results: 
From Eq. (3.1):  6 2

minB 27.75 10 N.mm= ×  

From Eq. (3.4):  9 2
compIB 1.7569 10 N.mm= ×  

From Eq. (3.3):  9 2
maxB 1.7846 10 N.mm= ×  

 
Here, ratio Bmax/Bmin is approximately 64. 
 
 
3.4 BENDING IN THE SLIP REGIME 

 

3.4.1 Qualitative analysis of the process 
 
Conductor is initially straight and under axial load T. A uniform curvature κ is imposed in a 
monotonous way, starting from zero. In the current model, tangential elasticity is neglected. Thus, the 
conductor behaves initially like a solid beam, with bending stiffness Bmax. Then, when b1κ = κ , 

incipient slip will appear on wires in the outer layer. As in the single layer case, slip propagates while κ 
is increased. At curvature κt1 slip is complete in layer (1). The same process is to be expected at inner 
layers: (κb2, κt2) in layer (2) etc. 
 
Because inter-layer pressure is higher between inner layers, and also because the maximum tensile 
force in wires (due to bending) is smaller due to their closeness to the neutral axis, slip phases start 
sequentially, from the outer layer to the inner ones. 
 
Rebuffel (1949), Lehanneur (1949), Lanteigne (1985) and Papailiou (1995) all assume there is no 
overlap of the slip phases, meaning total slip is achieved in one layer before the next one starts slipping 
and b1 t1 b2 t2 b3κ < κ ≤ κ < κ ≤ κ <�. In the paper by Hong et al. (2005), there seems to be a problem in 

the boundary conditions between stick and slip zones, and complete slip is never reached in any layer. 
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3.4.2 Pressure transmission between layers 
 
As shown in Chapter 1, because of the clenching effect due to the applied axial load T, each layer (i) 
exerts a pressure on the adjacent layer (i+1). In the single layer case (Chapter 2), this pressure is 
applied on the core wire. This direct contact pressure is easily determined. However, it also affects the 
contact pressure between layers (i+1) and (i+2) etc. 
 
Assuming this pressure is integrally transmitted, it was shown in Chapter 1 that the total line load 
between layers (i) and (i+1) on a wire of layer (i) is given by Eq. (1.25): 
 

2j i
j ji i

Ni j
j 1i i j j

n sindN cos
q F

ds n R cos

=

=

αα
= =

α
∑     (3.5) 

 
which may be rewritten as: 
 

2j i
ji i

Ni j
j 1i j i

sindN r
q F

ds r R

=

=

α
= =∑      (3.6) 

 
where dsi is the arc length element on the corresponding line of contact of layer (i). 
 
3.4.3 Point and line contact 
 
An important difference between single layer and multiple layer conductors is the occurrence of point 
contacts between adjacent layers because of the alternate lays. These contact points render the analysis 
of stick-slip conditions much more complex. 
 
Papailiou (1995) has shown that the discrete problem arising from the contact points could in fact be 
replaced by an equivalent continuous line contact problem. This approach will be used in the following 
analysis, although possible problems arising from this simplification will also be mentioned. 
 
3.4.4 Slip conditions on a wire element 
 

In Fig. 3.1, free body diagram for a wire element dsi of layer (i) is 
shown when curvature κ is imposed on the conductor. Here, a wire 
is considered to be a simple fibre where the only internal force on 
the cross-section is the tensile force Fi. Because of the imposed 
conductor bending, this force undergoes a variation dFi along the 
wire element. The external forces on the element arise from the 
contacts with layer (i-1) (on the outer fibre of the helical wire) and 
with layer (i+1) (wire inner fibre). As mentioned above, point 
contacts are replaced by line contacts. 
 
It is assumed wire slip on the inner adjacent layer (i+1) will occur 
in direction (ti), which is the local direction of the tangent to the 
wire centerline. It is also assumed layer (i+1) is still sticking to 
layer (i+2). Tangential force dQi is parallel to direction (ti). 
However, if layer (i-1) is already slipping on layer (i), tangential 

 

Fi+dFi 

Fi 

dN’i-1 

dNi dQi 

dQ’i-1 

βi ti 

Figure 3. 1 
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force i 1dQ −
′  makes an angle βi with respect to direction (ti). In fact, angle βi depends on the relative 

motion of the material points in contact. 
 
If wire element dsi is still in the stick regime with respect to layer (i+1), relative velocity of contacting 
points at the (i-1, i) interface is in the (ti-1) direction and i i i 1−β = α + α . Elementary tangential force 

i 1dQ −
′  is parallel to the (ti-1) direction. However, as soon as element dsi enters the slip regime, relative 

speed of contacting points at the (i-1, i) interface deviates from this direction and one has i i i 1−β > α + α  

(Fig. 3.2). 
 

According to Coulomb’s law, tangential force i 1dQ −
′  is parallel to the relative 

velocity rV
���

 of contacting points and it is in the opposite direction.  

 
In order to express the equilibrium equation of element dsi in the (ti) 
direction, projection of the elementary tangential force idQ′  onto this 

direction has to be taken. At the incipient slip stage, it is merely 

i i i 1dQ cos( )−
′ α + α . However, as the slip zone propagates on the (i, i+1) 

interface, angle βi varies from point to point along the line of contact. 
 
It is thus difficult to write down an explicit equilibrium equation for any 
element dsi in the slip zone. This explains why all published solutions are 
based on the following simplifying assumptions.  
 
 

 
3.4.5 Slip conditions (SC1) from Rebuffel-Lehanneur (1949) 
 
Rebuffel (1949) and Lehanneur (1949) assume tangential force i 1dQ −

′  is parallel to direction (ti) and in 

the same direction as the slip velocity iV
���

 (Fig. 3.2), since the slip of layer (i-1) on layer (i) is itself an 

inducing factor for the slip of layer (i) on layer (i+1). 
 
As already mentioned, at interface between layers (i) and (i+1), the normal line contact force on a layer 
(i) wire is given by Eq. (3.6). However, from Eq. (1.29), the line contact force at interface (i, i-1), 
acting on this same wire is: 
 

2i 1
ji i 1 i 1

N,i 1 j
j 1i 1 i j i 1

sinr R r
q F

r R r R

−
− −

−
=− −

α
′ = ∑      (3.7) 

 
These two expressions differ by the term j = i, which corresponds to the line contact force arising from 
tension Fi in a wire of layer (i), but also, the terms coming from the outer layers are not identical. They 
are close when wire radii are equal and for outer layers, where Ri and Ri-1 are not too different. 
 
Neglecting these differences, the only tangential force available to equilibrate the variation dFi due to 
bending comes from the normal force due to Fi in that same wire, as in the outer layer. Thus, with this 

 

Vi-1 

Vi 
Vr 

αi αi-1 

ti 

ti-1 

Figure 3. 2 
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hypothesis, the same slip condition applies to all layers, and it is independent from the pressure coming 
from the upper (i.e. outer) layers. 
 
This condition is the same as the one obtained with the single layer conductor. It yields the same 
equations for the limit curvatures, in which the parameters are those pertaining to each layer (i). Thus, 
for layer (i), the incipient slip curvature is given by the modified Eq. (2.14): 
 

i i
bi Ti 2

i i i

sin

E R cos

µ α
κ = σ

α
       (3.8) 

 
In layer (i), total slip curvature is also given by Eq. (2.15): 
 

( )i i( / 2)sinTi
ti 2

i i i

e 1
E R cos

µ π ασ
κ = −

α
     (3.9) 

 
When total slip state has been reached in layer (i), the friction residual moment between layers (i) and 
(i+1) is given by Eq. (2.23): 
 

( )
i

i j i

i

n 2
sin

rfi i T i j
j 1

M 2R F cos e 1 sinµ θ α

=

= α − θ∑     (3.10) 

 
where it is assumed the wire numbers ni are even numbers. The same remark as in section 2.5.3 should 
be made regarding the calculation of Mrfi. It is performed in one particular section and varies slightly 
for adjacent sections adjacent. The convention for the calculation of Mrfi is as follows. If the integer 
(ni/2) is odd (ni itself is assumed to be an even number), one wire centroid is assumed to be located on 
the conductor neutral axis. If (ni/2) is an even number, wires are assumed to be symmetrical with 
respect to the neutral axis. Note that in the no-slip regime, this problem does not arise. 
 
Example 3.2a 
 
In the Bersimis ACSR, coefficient of friction between layers is assumed to have the uniform value 
µi = 0.7. An axial load T = 30% RTS is applied. Based on contact hypotheses (SC1), determine: 
 
• The limit curvatures κb and κt for each of the four layers 
• The residual friction moment at each interlayer. 
 
Available Matlab® file: Example_3_2.m 
 
From Eq. (3.8) :  κb = [1.018  1.302  1.528  2.321] 10-5 (1/mm) 
From Eq. (3.9) :  κt = [1.834  2.312  2.605  3.839] 10-5 (1/mm) 
 
It is found that Lehanneur’s hypothesis, that slip is complete on a layer before the next one starts 
slipping, is not satisfied. One may still assume that the slip zone in layer (i+1) is in contact with a slip 
zone in layer (i), which would justify, up to a certain point, the hypothesis that the tangential force 
component due to the outer layers vanishes. 
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Result: 
Residual moment of friction (Eq. (3.10)) : Mrf = [3.116  1.385  0.309  0.054] 104 N.mm 
 
Example 3.2b 
 
In the Cardinal ACSR, coefficient of friction between layers is assumed to have the uniform value 
µi = 0.7. An axial load T = 30% RTS is applied. Based on contact hypotheses (SC1), determine: 
 
• The limit curvatures κb and κt for each of the four layers 
• The residual friction moment at each interlayer. 
 
Use Matlab® file : Example_3_2.m 
 
From Eq. (3.8) :  κb = [1.389  1.670  2.541  2.579] 10-5 (1/mm) 
From Eq. (3.9) :  κt = [2.478  2.942  4.484  4.295] 10-5 (1/mm) 
 
It is found that layer (4) reaches complete slip state before layer (3). This shows that slip conditions 
(SC1) are not valid in this case, as layer (3) will tend to be put into slip by layer (4), and slip in layer 
(4) would be restrained by layer (3). Direction of tangential forces shown in Fig. 3.4 should then be 
reversed. 
 
Result: 
Residual moment of friction (Eq. (3.10)) :Mrf = [1.9549  1.0132  0.4093  0.1591] 104 N.mm 
 
3.4.6 Slip conditions (SC2) from Papailiou (1995) 
 
While conditions (SC1) neglect completely the effect of outer layers on layer (i) slip, Papailiou (1995) 
and other authors (e.g. Hong et al. 2005), assume that the components of tangential friction forces idQ′  

acting on a wire element and related to outer layer pressure all act opposite to the slip direction. 
Besides, they are supposed to be identical on the inner and outer wire (i) fibres, that is at the (i, i+1) and 
(i, i-1) interfaces. This is equivalent to applying a coefficient of friction (µi + µi-1), that is 2µi , in 
general, to the normal contact force (Eq. (3.6)) coming from the layers on top of layer (i). Obviously, 
conditions (SC1) and ( SC2) differ drastically. 
 
Conditions (SC2) are difficult to justify physically. And this is the more so, as the slip phases are 
assumed to occur sequentially, without any overlap, from one layer to the next. It is difficult to 
understand why layer (i-1), being in the slip state, would oppose layer (i) slip. Thus, conditions (SC2) 
tend to have a strong retardation effect on inner layer slip. An advantage, for the mechanical motel, is 
that slip from one layer to the next is then clearly sequential, with no overlap. That is, slip is complete 
on one layer, before it starts on the next. As more general equilibrium equations are needed, numerical 
applications of these slip conditions will be shown later on.  
 
3.4.7 Slip conditions (SC3) 
 
With slip conditions (SC1) tangential friction forces arising from pressure exerted on layer (i) by outer 
layers (1) to (i-1) are assumed to be equal and opposite. The conductor lay being alternate (reverse), we 
have seen that this is not the case. At incipient slip of layer (i-1), elementary force i 1dQ −

′  is directed 
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parallel to the corresponding wire local tangent (practically the same as the wire centerline). Thus, 
because of the alternate lay, i 1dQ −

′  makes an angle close to ( )i i 1−α + α  with the outer fibre of the layer 

(i) wire, lay angles being taken as absolute values (Fig. 3.3). 
 
When layer (i) wire starts slipping on layer (i+1), the counteracting 
friction force is oriented along the local tangent to the virtual contact 
line between these two layers. Slip of layer (i) slightly modifies the 
relative motion with respect to layer (i-1). Thus, the corresponding 
friction force direction is also slightly modified. We shall neglect 
this effect, which vanishes at incipient slip (Fig. 3.3). 
For a wire element dsi , the corresponding equilibrium equation is : 
 

i i 1 i i 1 idF dQ cos( ) dQ 0− −
′+ α + α − =    (3.11) 

 
It is assumed that, when slip occurs at interface (i, i+1), it has 
already started at interface (i-1, i). Thus, dFi takes the limit value: 
 

i Li i i i 1 i 1 i i 1dF dF dN dN cos( )− − −
′= = µ − µ α + α   (3.12) 

 
Normal line contact force at interface (i, i+1)  is given by Eq. (3.6), while at interface (i, i-1), it is given 
by Eq. (3.7). 
 
And, using the same transformation as in Eq. (1.23) : 
 

2i 1
ji

i j i i
j 1 j i

i i 1
i 1 i 1

i 1 i

sinr
dN F d sin F d

r sin

r sin
dN dN

r sin

−

=

−
− −

−

α
= ϕ + α ϕ

α

α
′ =

α

∑
   (3.13) 

 
Again, it is assumed that layer (i) slip occurs after it has occurred in the outer layers (1) through (i-1). 
Thus, forces Fi take their limit value FLi and Eq. (3.12) becomes: 
 

2i 1
ji

i i Lj i Li
j 1 j i

2i 2
ji i 1 i 1

i 1 Lj i 1 L,i 1 i i 1
j 1i 1 i j i 1
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r sin

sinr sin r
F d sin F d cos( )
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−

=

−
− −
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=− −

 α
= µ θ + α θ  α 

 αα
−µ θ + α θ α + α  α α 

∑

∑

  (3.14) 

 
which yields: 
 

[ ]
2i 1

jLi i
i i Li i i 1 i i 1 Lj

j 1i j

sindF r
sin F cos( ) F

d sin r

−

− −
=

α
− µ α = µ − µ α + α

θ α
∑    (3.15) 
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These differential equations have to be integrated layer after layer, starting with the outer one. The first 
integral yields: 

1 1sin
L1 T1F F eµ α θ=       (3.16) 

 
This equation for wire tension F1 is valid only in the slip zone. For the next layer, it is again assumed 
slip starts on the conductor section “neutral axis”. Function (3.16) can now be used in the right hand 
member of Eq. (3.15). And the solution of this equation for the second layer (i = 2) is easily obtained. 
However, this solution is valid in layer (1) slip zone only. 
 
Papailiou (1995) assumes slip occurs sequentially: e.g., it starts in layer (2) only after it has been 
completed in layer (1). Besides, he simplifies the equations by replacing functions FLk(ϕ) by their 
initial constant value FTk. His calculations show this approximation has but a small influence on the 
resulting value for FLi(ϕ). Hong et al. (2005), however, do not use this simplification, and this leads to 
rather different results. 
 
It has also been found, using slip conditions (SC1), in which layers are independent, that slip in layer 
(i) may start even before it has started in layer (i-1) (Example 3.2b). 
 
Slip conditions (SC3): a study of slip propagation from one layer to the other 
For each layer (i), the following parameters are defined: 
 

i i isinλ = µ α        (3.17) 

 
2

i
i

i

sin
b

r

α
=        (3.18) 

 

( )i
i i i 1 i i 1

i

r
c cos( )

sin − −= µ − µ α + α
α

    (3.19) 

 
Eq. (3.15) may then be expressed as:  
 

i 1
Li

i Li i j Lj
j 1

dF
F c b F

d

−

=

− λ =
θ

∑      (3.20) 

 
These equations are then easily integrated, layer after layer, starting with the outer layer (i =1). In each 
case, Papailiou’s hypothesis is used: wire force Fi is assumed to remain constant (independent of 
conductor curvature) at the section “neutral axis” (ϕ = 0 or π) and it stays equal to the initial force FTi 
arising from the applied axial force T on the conductor. Solutions given below correspond to the half-
layer [-π/2 +π/2]. They are: 
 
For i = 1 : 

1
L1 1,1 1,1 T1F a e with a Fλ θ= =     (3.21) 

 
For i = 2 : 

1 2
L2 2,1 2,2F a e a eλ θ λ θ= +       (3.22) 



 

42 
 

where: 

2
2,1 1 1,1 2,2 T2 2,1

1 2

c
a b a a F a= = −

λ − λ
   (3.23) 

 
For i = 3 : 

31 2
L3 3,1 3,2 3,3F a e a e a eλ θλ θ λ θ= + +     (3.24) 

 
where: 

( )3 3
3,1 1 1,1 2 2,1 3,2 2 2,2 3,3 T3 3,1 3,2

1 3 2 3

c c
a b a b a a b a a F (a a )= + = = − +

λ − λ λ − λ
  (3.25) 

 
For i = 4 : 

31 2 4
L4 4,1 4,2 4,3 4,4F a e a e a e a eλ θλ θ λ θ λ θ= + + +    (3.26) 

 
where: 

( ) ( )4 4
4,1 1 1,1 2 2,1 3 3,1 4,2 2 2,2 3 3,2

1 4 2 4

4
4,3 3 3,3 4,4 T4 4,1 4,2 4,3

3 4

c c
a b a b a b a a b a b a

c
a b a a F (a a a )

= + + = +
λ − λ λ − λ

= = − + +
λ − λ

   (3.27) 

 
etc. 
 
These equations are easily put in a general form. In layer i m≤  , wire force in the slip zone is given 
by : 
 

j

i

Li i, j
j 1

F a eλ θ

=

=∑       (3.28) 

 
 
in which coefficients ai,j are given by : 
 

i 1
i

i, j k k, j
k jj i

i 1

i,i Ti i,k
k 1

c
a b a for j i m

a F a

−

=

−

=

= < ≤
λ − λ

= −

∑

∑
   (3.29) 

 
In each sum, a negative or null index corresponds to a vanishing term. 
 
Slip initiation in layer (i) 
Once again, it is assumed slip always starts on wire sections located on the conductor “neutral axis”. 
Before the occurrence of slip, the complementary stress in a wire is given by the usual sine function:  
 

( ) 2
i i i iE R sin cosσ = κ θ α      (3.30) 
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Thus, in the no-slip domain (domain I), the total wire force is given by: 
 

( ) 2
Ii Ti i i i iF F A E R sin cos= + κ θ α     (3.31) 

 
The slope of this sine function at ϕ = 0 is: 
 

2Ii
i i i i

0

dF
A E R cos

d θ=

= κ α
θ

     (3.32) 

 
In layer (i), the limit force, which is independent of the imposed curvature, is given by Eq. (3.28). Its 
derivative at ϕ = 0 is : 
 

i
Li

j i, j
j 10

dF
a

d =θ=

= λ
θ

∑       (3.33) 

 
Incipient slip in layer (i) occurs at curvature κbi , when both slopes are equal. Thus, this yields an 
equation for κbi : 
 

i

j i, j
j 1

bi 2
i i i i

a

A E R cos
=

λ

κ =
α

∑
      (3.34) 

 
Total slip in layer (i) 

Slip is complete in layer (i) when the slip zone reaches the “extrados”section (θ = π/2), that is, the 
contact points located further away from the section “neutral axis”, on the convex side . This occurs for 

curvature κti . At this stage, one has Ii LiF F
2 2

π π   
=   

   
. From Eqs (3.28) and (3.31), this yields 

 

j

i
22

Ti i i ti i i i, j
j 1

F A E R cos a eλ π

=

+ κ α =∑     (3.35) 

 
From which the limit curvature κti is obtained: 
 

j

i
2

i, j Ti
j 1

ti 2
i i i i

a e F

A E R cos

λ π

=

−

κ =
α

∑
      (3.36) 

 
Residual moment of friction on layer (i) 
When slip of layer (i) on layer (i+1) is complete, force FLi(θ) in each wire of layer (i) is now 
independent of conductor curvature. Let Mrfi be the moment of these forces with respect to the 
conductor section “neutral axis”. As in the single layer case, it is called the “residual moment of 
friction”. Here, it is given by: 
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( )
in 2

rfi i Li j Ti i j
j 1

M 2cos F ( ) F R sin
=

= α θ − θ∑     (3.37) 

 
Here again, a factor 2 is needed as the summation is made on half of the wires, those located in the 

[ ]2 2− π + π  domain. It is not absolutely necessary to subtract FTi from FLi since, in principle, one 

has the identity 
in 2

j
j 1

sin 0
=

θ =∑ . It is shown in the equation in case a certain positioning of the wires in the 

cross section would not exactly yield a zero moment from the FTi forces. 
 
Example 3.3  
 
In the Bersimis ACSR, coefficient of friction between layers is assumed to have the uniform value 
µi = 0.7. An axial load T = 30% RTS is applied. Based on slip conditions (SC3), determine: 
 
• The limit curvatures κb and κt for each of the four layers 
• The residual friction moment at each interlayer. 
 
Available Matlab® file: Example_3_3.m (with case No 1) 
 
Results: 
Limit curvatures 
From Eq. (3.34) : κb = [1.018  1.548  2.233  3.171] 10-5 (1/mm) 
From Eq. (3.36) : κt = [1.834  2.810  3.984  5.448] 10-5 (1/mm) 
 
With these slip conditions, slip of layer (2) initiates before complete slip in layer (1). This also applies 
to layers (3) and (4). 
 
Residual moment of friction (Eq. (3.37)) : 
They are calculated with the original (SC3) hypotheses. However, while the value of the fourth 
moment is questionable, its relative influence is very small. 
 
Mrf = [3.1160  1.65  0.4533  0.074] 104 N.mm 
 
3.4.8 Slip conditions (SC4) 
 
In Eq. (3.15), limit forces FLj from outer layers which appear in the right hand member of the 
differential equations are exponential functions. Papailiou (1995) makes the integration simpler by 
replacing the exponential by a constant term. This term is taken as the initial wire tension FTj , that is, 
when the conductor is bent, wire tension at ϕ = 0. With this simplification, differential equations (3.15) 
are uncoupled. They are now expressed as: 
 
 

[ ]
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=
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And, using the same notations as above: 
 

i 1
Li

i Li i k Tk
k 1

dF
F c b F

d

−

=

− λ =
θ

∑       (3.39) 

 
All right hand members being constant, all solutions can be written as: 
 

i
Li c,i iF a e fλ θ= +        (3.40) 

 
where: 

i 1
i

i k Tk c,i Ti i
k 1i

1 c,1 T1

c
i 1 f b F et a F f

i 1 f 0 et a F

−

=

> = − = −
λ

= = =

∑
    (3.41) 

Thus: 

( ) i
Li Ti i iF F f e fλ θ= − +        (3.42) 

 
Limit curvatures are now expressed as: 
 

i Ti i
bi 2

i i i i

(F f )

A E R cos

λ −
κ =

α
       (3.43) 

 

( )i 2
Ti i

ti 2
i i i i

(F f ) e 1

A E R cos

λ π− −
κ =

α
      (3.44) 

 
Residual moment of friction for each layer is still given by Eq. (3.37). However, limit forces FLi are 
now given by Eq. (3.42). Thus, residual moment of friction on layer (i) is given by: 
 

( ) ( )
i

i j

n 2

rfi i i Ti i j
j 1

M 2R cos F f e 1 sinλ θ

=

= α − − ϕ∑     (3.45) 

 
where it is assumed, as before, that the ni are even numbers. 
 
Example 3.4  
 
In the Bersimis ACSR, coefficient of friction between layers is assumed to have the uniform value 
µi = 0.7. An axial load T = 30% RTS is applied. Based on slip conditions (SC4), determine: 
 
• The limit curvatures κb and κt for each of the four layers 
• The residual friction moment at each interlayer. 
 
Available Matlab® file: Example_3_4.m (select case No 1) 
 
Results: 
Limit curvatures 
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From Eq. (3.43) : κd = [0.989  1.504  2.171  3.082] 10-5 (1/mm) 
From Eq. (3.44) : κt = [1.782  2.671  3.7  5.097] 10-5 (1/mm) 
 
Residual moment of friction (Eq. (3.45)) : 
Mrf = [3.028  1.6  0.4391  0.0722] 104 N.mm 
 
It is found conditions (SC3) and (SC4) yield very similar results, thus showing the validity of 
Papailiou’s simplification. 
 
3.4.9 Slip conditions (SC5) 
 

As shown in Fig. 3.2, relative velocity rV
�

 tends to deviate more and more from the it
�

 direction, that is, 

the local tangent to the layer (i) wire centerline, it seems another set of plausible slip conditions, which 
are intermediate between (SC1) and (SC3), would be conditions (SC5), where the effect of the outer 
layer (i-1) on layer (i) is neglected, and only the retaining effect of layer (i+1) is considered. Eqs (3.20) 
or (3.38) still apply, except that in the right hand member, coefficient of friction µi-1 vanishes. Thus, the 
ci parameters are now expressed as: 
 

i
i i

i

r
c

sin
= µ

α
       (3.46) 

 
Example 3.5a 
 
In the Bersimis ACSR, coefficient of friction between layers is assumed to have the uniform value 
µi = 0.7. An axial load T = 30% RTS is applied. Based on slip conditions (SC5), determine: 
 
• The limit curvatures κb and κt for each of the four layers 
• The residual friction moment at each interlayer. 
 
Available Matlab® file: Example_3_5.m (case No 1) 
 
Results: 
Limit curvatures: 
From Eq. (3.34) : κb = [1.02  2.90  8.90  23.01] 10-5 (1/mm) 
From Eq. (3.36) : κt = [1.83  5.56  17.85  47.34] 10-5 (1/mm) 
 
Residual moment of friction (Eq. (3.37)) : 
Mrf = [3.1160  3.1118  1.8257  0.5478] 104 N.mm 
 
The last three residual moments are of course slightly higher than with conditions (SC3). An interesting 
feature yielded by conditions (SC5) is that layer slip phases are clearly sequential and well separated, 
as assumed Lehanneur (1949) and Papailiou (1995), as well as by Lanteigne (1985). 
 
With conditions (SC5), the (M vs κ) diagram is made of linear segments connected by non-linear 
curves which correspond to phases of slip propagation in each layer. 
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Example 3.5b 
 
In the Cardinal ACSR, coefficient of friction between layers is assumed to have the uniform value 
µi = 0.7. An axial load T = 40 kN is applied. Based on slip conditions (SC5), determine: 
 
• The limit curvatures κb and κt for each of the four layers 
• The residual friction moment at each interlayer. 
 
Available Matlab® file: Example_3_5.m (case No 2) 
 
Results: 
Limit curvatures: 
From Eq. (3.34) : κb = [1.23  3.27  7.61  11.86] 10-5 (1/mm) 
From Eq. (3.36) : κt = [2.20  6.16  15.25  24.08] 10-5 (1/mm) 
 
In this case, slip in layer (4) would start before slip in layer (3) is complete. 
 
Residual moment of friction (Eq. (3.37)) : 
Mrf = [1.7336  1.9937  1.2403  0.7429] 104 N.mm 
 
3.4.10 Slip conditions (SC2) revisited 
 
In section 3.4.6, conditions (SC2), used by Papailiou (1995), have been qualitatively described. They 
are based on the assumption that both layers (i-1) and (i+1) restrain layer (i) slip and that the 
corresponding friction forces are equal and oriented in the it

�
 local tangent direction. This may now be 

easily implemented in the previous equilibrium equations. For example, in Eq. (3.15), i i 1cos( )−α + α  

needs to be replaced by 1, and i 1−µ  needs to be replaced by i 1−−µ . Thus, in Eq. (3.19), parameter ci 

becomes: 
 

( ) i
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i
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c
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      (3.47) 

 
Using the simplification described with conditions (SC4), of a constant force, Eqs (3.38) have to be 
modified accordingly. 
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Solutions take the same form as in Eqs (3.40) to (3.45). As seen in the following example, numerical 
results are of course quite different. 
 
 
Example 3.6a 
 
In the Bersimis ACSR, coefficient of friction between layers is assumed to have the uniform value 
µi = 0.7. An axial load T = 30% RTS is applied. Based on slip conditions (SC2), determine: 
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• The limit curvatures κb and κt for each of the four layers 
• The residual friction moment at each interlayer. 
 
Available Matlab® file: Example_3_6.m (with case No 1) 
 
Results 
Limit curvatures 
From Eq. (3.34) : κb = [1.02  4.51  16.28  43.71] 10-5 (1/mm) 
From Eq. (3.36) : κt = [1.83  8.00  27.75  72.28] 10-5 (1/mm) 
 
Residual moment of friction (Eq. (3.37)) : 
Mrf = [3.12  4.80  3.29  1.02] 104 N.mm 
 
Of course, results are unchanged for the first layer (limit curvatures and residual moment of friction). 
As might be expected, it is found conditions (SC2) yield clearly sequential slip phases and higher 
residual moments of friction (for layers 2 to 4). 
 
Example 3.6b 
 
In the Cardinal ACSR, coefficient of friction between layers is assumed to have the uniform value 
µi = 0.7. An axial load T = 40 kN is applied. Based on slip conditions (SC2), determine: 
 
• The limit curvatures κb and κt for each of the four layers 
• The residual friction moment at each interlayer. 
 
Available Matlab® file: Example_3_6.m (select case No 2) 
 
Results: 
Limit curvatures: 
From Eq. (3.34) : κb = [1.23  5.05  12.96   21.44] 10-5 (1/mm) 
From Eq. (3.36) : κt = [2.20  8.90  22.87  35.71] 10-5 (1/mm) 
 
In this case, slip in layer (4) would start slightly before slip in layer (3) is complete. 
 
Residual moment of friction (Eq. (3.37)) : 
Mrf = [1.734  3.065  2.087  1.323] 104 N.mm 
 

 

3.5 MOMENT-CURVATURE DIAGRAM WITH SLIP 
 
Assuming slip phases from one layer to the next are truly sequential (for layer (i), between curvatures 
κbi et κti), the (M vs κ) diagram is made of straight segments connected with curves corresponding with 
slip zone extension between two layers. 
 
The slope of a straight line corresponds to the residual bending stiffness Bi : B0 corresponds to Bmax, B1 
corresponds to the (n-1) sticking layers plus layer (1) minimum bending stiffness when total slip has 
been reached etc. At this stage moment the (M vs κ) relationship is : 
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1 rf1 t1 b2M B M= κ + κ ≤ κ ≤ κ      (3.49) 

 
where Mrf1 is the residual moment of friction between layers (1) and (2). 
Beyond curvature κt2, B2 is the new bending stiffness, and the (M vs κ) relationship is given by:  
 

2 rf1 rf 2 t2 b3M B M M= κ + + κ ≤ κ ≤ κ     (3.50) 

 
Defining moment Mr2 as the sum : 
 

r2 rf1 rf 2M M M= +        (3.51) 

 
Mr2 is the total residual moment of friction when layers (1) and (2) are in the complete slip stage. Thus: 
 

2 r2 t2 b3M B M= κ + κ ≤ κ ≤ κ      (3.52) 

 
After layer (i) has reached the complete slip stage, the (M vs κ) relationship is : 
 

i ri ti b,i 1M B M += κ + κ ≤ κ ≤ κ      (3.53) 

 
in which the residual moment of friction is : 
 

i

ri rfj
j 1

M M
=

=∑         (3.54) 

 
Linearization of the (M vs κκκκ) diagram 
 

As in the single-layer case, the actual (M vs κ) diagram can 
be replaced with a simpler polygonal curve. Each partial 
slip domain (κbi, κti) is replaced with a median transition 
curvature κm,i , which is obtained at the point where lines of 
slope Bi-1 and Bi intersect. Thus, this median curvature is 
given by: 
 

r,i r,i 1
m,i

i 1 i

M M

B B
−

−

−
κ =

−
   (3.55) 

 
The (M vs κ) diagram can now be represented as in Fig. 
3.4. 
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Figure 3.4 
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Example 3.7 
 
In the Bersimis ACSR, coefficient of friction between layers is assumed to have the uniform value 
µi = 0.7. An axial load T = 30% RTS is applied. Based on slip conditions (SC5), determine: 
 
• Bending stiffness Bi after each slip phase is complete 
• Residual moment of friction Mr,i 
• Median transition curvature κm,i  and corresponding moment Mm,i  
 
Available Matlab® file: Example_3_7.m 
 
Results: 
Bending stiffness Bi after layer (i) slip is complete 
B = [1.0842  0.2458  0.0828  0.0635] 109 N.mm2 
 
Residual moment of friction after layer (i) slip is complete 
Mr = [3.1160  6.2278  8.0535  8.6013] 104 N.mm 
 
Median transition curvatures 
From Eq. (3.55) : κm = [1.30  3.71  11.20  28.29] 10-5 (1/mm) 
 
Median transition moments 
From Eq. (3.53) : Mm = [4.524  7.140  8.982  10.397] 104 N.mm 
 
 
This example is based on the case given by Lanteigne (1985). For the same conductor, under the same 
axial load T, this author gives the first two transition curvatures. According to his own model, these 
curvatures are 2.22×10-5 and 3.28×10-4 (1/mm). Here, they are found to be 1.30×10-5 and 3.71×10-5 , 
showing the current model (with the (SC5) conditions) predicts slip occurring at a much earlier stage in 
the bending process. 
 
Example 3.8 
 
In the Cardinal ACSR, coefficient of friction between layers is assumed to have the uniform value 
µi = 0.7. An axial load T = 40 kN is applied. Based on slip conditions (SC2), determine: 
 
• Bending stiffness Bi after each slip phase is complete 
• Residual moment of friction Mr,i 
• Median transition curvature κm,i  and corresponding moment Mm,i  
 
Available Matlab® file:  Example_3_8.m 
 
Results: 
Bending stiffness Bi after layer (i) slip is complete: 
B = [6.8280  2.0612  0.7873  0.2775] 108 N.mm2 
 
Residual moment of friction after layer (i) slip is complete: 
Mr = [1.734  4.799  6.886  8.209] 104 N.mm 
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Median transition curvatures: 
From Eq. (3.55) : κm = [1.57  6.43  16.38  25.95] 10-5 (1/mm) 
 
Median transition moments: 
From Eq. (3.53) : Mm = [2.808  6.124  8.176  8.929] 104 N.mm 
 
This example is based on the case treated by Papailiou (1995). Unfortunately, transition curvatures are 
not given in the report. 
 
Secant bending stiffness 
As in Chapter 2 (Figs 2.4 and 2.6), a secant stiffness B(κ) can be defined. It is simply the slope of the 
straight line from the origin to a given point (κ, M) on the (M vs κ) curve. In the Matlab® function 
Example_3_8.m, there is an option to draw the B(κ) curve. Functions Example_3_8a.m to 
Example_3_8c.m are specific applications to the Bersimis ACSR case, allowing a comparison with 
Lanteigne (1985) results for the three axial loads presented in his paper: a) 20% ; b) 40% ; c) 100% of 
RTS. It is found that his staircase type curves are indeed a crude approximation of the secant B(κ) 
curve obtained with the current model (based on the (SC2) conditions, although the same is found with 
other conditions). 
 
Rheological modelling 
As in the single layer case (section 2.6), the above linearized model for a multiple layer conductor in 
bending can be represented by a rheological model made of springs and friction sliders. A four-layer 
conductor will need four spring-slider couples plus a single spring. Such model may be useful to 
analyze more complex load-unload cycles, such as the ones considered in (Papailiou, 1995). Details are 
given in Appendix C. 
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CHAPTER 4 

 

APPLICATION TO VARIABLE STIFFNESS PROBLEMS (FREE BENDING) 
 
 
4.1 INTRODUCTION 
 
So far, only the purely theoretical situation of uniform curvature bending has been considered. The 
objective of this chapter is to examine how the previous stick-slip models may be applied to free-
bending situations (that is, a conductor without contact with another solid), in which conductor 
curvature varies from point to point. 
 
In many instances, uniform curvature theoretical models of a conductor or cable bending behaviour 
have been proposed without any accompanying experimental justification. This observation applies to 
the papers by Rebuffel (1949) and Lehanneur (1949), Lanteigne (1985) and Hong et al. (2005). 
 
In several cases, the experimental evidence is limited to local strain measurements on some of the outer 
strands: Raoof (1992), Claren and Diana (1969), Poffenberger and Swart (1965) etc. Often, these tests 
are small amplitude dynamic tests which yield a kind of information which cannot be used to check the 
validity of the quasi-static bending models.  
 
Here, two free-bending situations are examined. Firstly, the clamped-clamped taut conductor specimen 
under a transverse load. Because it has been used in several studies, it will be given a detailed account. 
Secondly, it will be seen how these results apply to the free field small amplitude vibrations of a 
conductor near a suspension clamp. 
 
 
4.2 STATIC SYMMETRIC BENDING TESTS ON A TAUT CONDUCTOR SPECIMEN 
 
As already mentioned, imposing a uniform curvature to a conductor under axial load, in free bending is 
a purely theoretical situation which cannot be practically implemented. One method which is often 
used to evaluate the bending stiffness of a taut conductor is schematized in Fig. 4.1. 
 
 

T 
P 

L/2 L/2 

A B C 

 

Figure 4. 1 

Conductor specimen AB, length L, is put under tension T. At center point C, a transverse force P is 
applied, increasing monotonously from zero. Tension T is kept constant while this transverse loading is 
applied. Ensuing transverse displacement δC is recorded as a function of force P. From this record, one 
tries to obtain an equivalent conductor bending stiffness by comparison with a standard beam having a 
uniform stiffness B. 
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Among others, this test method has been used by Monroe and Templin (1932), McConnell and Zemke 
(1980), Zeitler (1994), and by Papailiou (1995). In the first two papers, the test specimen is considered 
to be similar to a clamped-clamped beam, having a uniform bending stiffness B. Thus, the usual 
Bernoulli-Euler beam theory is applied, assuming small displacements, and an equivalent bending 
stiffness Beq is obtained for the conductor. This value has to be different from the stiffness B defined in 
the preceding chapters. Indeed, the experimental set-up shown in Fig. 4.1 obviously yields a variable 
curvature for the transverse deflection. The absolute value of the curvature is maximum at points A, B 
and C, and it vanishes at two intermediate points of inflexion. As shown in Chapters 2 and 3, beyond a 
certain value, such variable curvature will correspond to a variable stiffness. Thus, the relationship 
between Beq and the local stiffness B of the conductor under test is not clear. 
 
This drawback has been recognized by Papailiou (1995). Thus, instead of the analytical model based on 
a uniform stiffness beam, he uses the finite element analysis method (FEA) in which the specimen is 
discretized into a number of constant stiffness beam elements. For each element, it is assumed the 
uniform curvature results of Chapters 2 and 3 apply. Thus, for a given curvature κ of the element, the 
corresponding stiffness B(κ) may be obtained (given the axial load T). His tests, performed on a set up 
such as the one in Fig. 4.1, were not used to obtain a particular equivalent stiffness Beq. His objective 
was merely to check the uniform curvature model may be applied to a variable curvature situation. 
Papailiou’s numerical results (mostly, the specimen center point deflection vs applied transverse force 
P) do seem to predict rather well his test data. 
 
With the same experimental set up, Zeitler (1994) uses a different approach. In order to obtain an 
analytical relationship (δC,P,T), he uses an empirical equation, in which the stiffness is not a required 
parameter. In his paper, the conclusion is that bending behaviour of the conductor specimen cannot be 
represented by the standard beam bending theory. However, it is easily shown his mathematical model 
is flawed. Once corrected, his test data may be adjusted to equations obtained by Monroe and Templin 
(1932), and by McConnell and Zemke (1980) (which are in fact the same). 
 
The various approaches are detailed in the following. 
 
 
4.3 UNIFORM STIFFNESS CLAMPED-CLAMPED TAUT BEAM  
 
Here, the well known theory of a beam under axial load and subjected to a central transverse force is 
recalled. 
 

 

T 
P 

A B C 

P/2 P/2 

T 

x 

v(x) M0 M0 

 

Figure 4. 2 
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The shear force in the AC and CB regions is V(x). Each beam cross-section undergoes a transverse 
displacement v(x). The free body diagram for beam segment 0 x L 2≤ <  is shown in Fig. 4.3. 

 
N(x) 

A 

P/2 
V(x) 

T 

x 

v(x) M(x) 

M0 φ(x) 

 

Figure 4. 3 

 
Each cross-section undergoes a rotation (x) dv dxϕ � . Thus, equations of equilibrium are as follows: 
 
 

0

N(x) cos V(x)sin T

P
N(x)sin V(x)cos

2
M(x) M N cos v(x) Nsin x V cos x V sin v(x) 0

ϕ − ϕ =

ϕ + ϕ =

− − ϕ + ϕ + ϕ + ϕ =

  (4.1) 

 
From the first two equations, internal forces N(x) and V(x) can be expressed in terms of T and P. Then, 
they are used in the third equation to get M(x). Results are: 
 

0

P
N T cos sin

2
P

V T sin cos
2

P
M(x) M Tv(x) x

2

= ϕ + ϕ

= − ϕ + ϕ

= + −

       (4.2) 

 
The usual moment-curvature relationship is supposed to apply, yielding: 
 

2

02

d v P
B M(x) M Tv(x) x

dx 2
= = + −       (4.3) 

 
where B = EI is the uniform beam bending stiffness. 
 
This equation may be written as: 
 

2

02

d v P
B Tv M x

dx 2
− = −        (4.4) 

Another expression is: 
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2 0M P
v v x

B 2B
′′ − λ = −        (4.5) 

 
in which the λ parameter is defined as: 

2 T T

B EI
λ = =        (4.6) 

 
One particular solution to Eq. (4.5) is: 
 

0
p

MP
v x

2T T
= −       (4.7) 

 
and the general solution to ODE Eq. (4.5) is: 
 

1 2 pv(x) C sinh x C cosh x v (x)= λ + λ +     (4.8) 

 
This equation contains three as yet undefined constants: C1, C2, M0. They can be found using the three 
following boundary conditions: 
 
At point A (x = 0), assuming a perfect clamp condition:   v(0) 0 v (0) 0′= =  

At point C (x = L/2), by symmetry, tangent must be horizontal: v (L 2) 0′ =  
 
These two conditions yield: 
 

0

L
cosh 1P 2M

L2 sinh
2

λ 
− 

=  λλ  
 

       (4.9) 

 
The deflection v (x) given by Eq. (4.8) becomes: 
 

L
cosh 1P 2v(x) ( x sinh x) (cosh x 1)

L2 T sinh
2

λ 
− 

= λ − λ + λ − λλ  
 

   (4.10) 

 
In particular, mid-point C deflection is given by C v(L 2)δ =  (here, v(x) 0≥ ). A new, non-

dimensional, parameter L 2β = λ  is defined, yielding: 
 

C

P 2(cosh 1)

2 T sinh

 β −
δ = β − λ β 

       (4.11) 

 
This expression is similar to the non-dimensional expression given by McConnell and Zemke (1980): 
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C4T 2(1 cosh )
1

PL sinh

δ − β
= +

β β
       (4.12) 

 
It can easily be checked the point of inflexion is located at x = L/4 (and, by symmetry, at x = 3L/4). 
This result also coincides, under a slightly different form, with the equation given by Monroe and 
Templin (1932). 
 
Example 4.1 
 
In the case of the Cardinal ACSR, it was found (Chapter 3) that 6 2

minB 27.75 10 N.mm= ×  and 
9 2

maxB 1.7846 10 N.mm= × . It is assumed beam AB is made of this same conductor. Its length is 

L = 1 m, and it is subjected to axial load T = 40 kN and transverse force P = 4 kN, which acts at mid-
point C. Assuming this specimen may be considered as a standard uniform stiffness B beam, determine 
the deflection δC at point C for these two stiffness limit values. 
 
Available Matlab®  file: Example_4_1.m (select case No 1) 
 
Results:  
Using Eq. (4.11), it is found: 
With B = Bmin  δC = 22.366 mm 
With B = Bmax  δC = 7.499 mm 
 
These are indeed the values found by Papailiou (1995) for the same given parameters. 
 
It should be noted that, while the stiffness ratio is max minB / B 64.3= , the ratio between corresponding 

deflections is only 2.98. 
 
Example 4.2 
 
With the same data as in Example 4.1, determine the extreme values for the β parameter as well as for 
the right-hand member RHM of Eq. (4.12). 
 
Available Matlab® file: Example_4_2a.m. 
 
With B = Bmin  β1 = 19.16 RHM = 0.8956 
With B = Bmax  β2 = 2.367 RHM = 0.2999 
 
Now, let us assume a test has been performed on that specimen and the measured center deflection is 
δC = 17 mm. Determine the equivalent bending stiffness of the conductor. 
 
Use Matlab® file Example_4_2b.m. 
In this function, the corresponding left-hand member LHM of Eq. (4.12) is first calculated. Then, the 
interval (β1-β2) is divided into small steps ∆β = (β1-β2)/10000 (say). Starting at β = β2, parameter β is 
increased step by step, and RHM is calculated and compared with the LHM value. Process terminates 
when RHM > LHM. 
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Results:  
6.071β =   

8 2
eqB 2.713 10 N.mm= ×  or eq minB 9.96 B=  

 

Variation of curvature  
 

Curvature 
2

2

d v
v (x)

dx
′′=  is easily obtained from Eq. (4.10): 

 
P cosh 1

v (x) sinh x cosh x
2T sinh

 λ β −
′′ = − λ + λ β 

    (4.13) 

 
The maximum curvature occurs at the clamped ends A and B, and at mid-point C. It is easily checked it 
has the same absolute value at each one of these points. It is given by: 
 

max

L P cosh 1
v (0) v

2 2T sinh

λ β − 
′′ ′′= = κ = 

β 
    (4.14) 

 
When beam AB is a conductor specimen, it has been shown that, beyond a certain value of curvature κ, 
layers start slipping, and bending stiffness becomes a variable. Curvature κmax being directly 
proportional to the ratio (P/T), the maximum value of this ratio for which the constant stiffness solution 
holds is easily found. 
 
Example 4.3 
 
The same specimen as in Example 4.1 is considered: Cardinal ACSR, L = 1 m, axial load T = 40 kN. 
For the given conductor, it was found in Example 3.5b that, under T = 40 kN, and with a coefficient of 
friction µ = 0.7, under SC5 slip conditions, outer layer slip starts at curvature κb,1 = 1.23×10-5 mm-1. 
For a system such as the one shown in Fig. 4.1, determine the maximum value of transverse force P 
which can be applied before any slip occurs in the test specimen AB. 
 
Available Matlab® file: Example_4_3.m 
 
Result:  P = 250.8 N 
 
Above this force level, bending stiffness decreases in the high curvature regions and the uniform 
curvature solution is no longer valid. However, this limit value is based on the assumption that 
interlayer slip is unrestrained, and it is obvious this condition is not truly fulfiled in the present 
experimental set up, where both ends of the specimen are assumed to be perfectly clamped. This 
question will be re-examined further on. 
 
 
4.4 VARIABLE BENDING STIFFNESS 
 
As proposed by Papailiou (1995), an approximate solution to the variable stiffness problem may be 
obtained using the uniform curvature solutions found in Chapter 3. Again, the (M,κ) curve is replaced 
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by a polygonal diagram. Now, transverse load P has to be applied step by step in order to follow slip 
propagation firstly on a given interface, and secondly within the conductor cross-section. 
 
However, one should decide which definition of stiffness is to be used, either secant stiffness, or 
tangent stiffness. Papailiou (1995) uses the secant stiffness, which yields a continuous variation from 
one element to the next. On the contrary, Dastous (2005) uses the tangent stiffness B0, B1, B2 etc., that 
is, the slope of the segments in the polygonal approximate diagram (M, κ). This last approach is valid 
in an incremental numerical procedure in terms of (dM, dκ). When the procedure uses (M, κ) values, 
the secant stiffness should be used. In the loading process, it is obtained as follows. 
 
Phase I : 10 P P≤ ≤  

 
No slip. Bending stiffness is uniform and a maximum: B = B0 = Bmax . The secant and tangent stiffness 
are identical (at least in the case of an initial loading starting from a “virgin” state). 
 
When P = P1, curvature absolute value at critical points A, B et C reaches κm,1 and then, the outer layer 
starts slipping on the second layer.  
 
Phase II : 1 2P P P≤ ≤  

 
The region of outer layer slip propagates at critical points A, B and C. In these regions, the curvature of 
a given elementary conductor element has increased from 0 to κ(x) where m,1 m,2(x)κ ≤ κ ≤ κ . For two 

neighbouring elements, the corresponding points on the (M,κ) diagram are slightly different. In this 
region, the (M vs κ) relationship is: 
 

rf ,1 1M(x) M B (x)= + κ      (4.15) 

 
Thus, the secant stiffness at curvature κ is: 
 

rf ,1
sec 1

MM
B ( ) Bκ = = +

κ κ
     (4.16) 

 
This secant stiffness decreases as κ increases. There is a discontinuity in the tangent stiffness at the no-
slip and slip region boundary. Near the clamped end point A, this boundary has an abscissa x1 which is 
a function of applied force P. 
 
Phase III : 2 3P P P≤ ≤  

 
When P = P2, the absolute value of curvature at critical points A, B and C becomes κm,2 and slip starts 
on the second layer. For P > P2 this slip region propagates. Near the clamped end A, its boundary is at 
point of abscissa x2. In domain 20 x x≤ ≤ , the (M vs κ) relationship is: 

 

rf ,2 2M(x) M B (x)= + κ      (4.17) 

 
The secant bending stiffness at curvature κ is: 
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rf ,2
sec 2

MM
B ( ) Bκ = = +

κ κ
     (4.18) 

 
The same type of reasoning applies when layer i = 3 starts slipping, and so on. 
 
 
4.5 NUMERICAL METHODS 
 
For the system shown in Fig. 4.1, with variable bending stiffness, center point deflection δC as a 
function of applied transverse force P, has to be determined numerically. The FEA method has been 
used by Papailiou (1995). However, the problem being basically one-dimensional (one space variable 
x), and the moment-curvature equations being linear, the Transfer Matrix Method (TMM), such as 
presented by Pilkey (2002), may also be used. One of its interesting features is that it is easily 
programmed.  
 
Transfer Matrix derivation for conductor element (i) is detailed in Appendix D. In order to test the 
accuracy of this method, Example 4.1 is solved again, this time, using the TMM. 
 
Example 4.4 
 
For the Cardinal ACSR, the theoretical minimum and maximum bending stiffness have been found to 
be, respectively, 6 2

minB 27.75 10 N.mm= ×  and 9 2
maxB 1.7846 10 N.mm= × . Now, referring to the set 

up shown in Fig. 4.1, conductor specimen AB length is taken L = 1 m. The applied axial load is T = 40 
kN, and a transverse force P = 4 kN is applied at point C. It is assumed the specimen behaves as a 
standard beam with uniform stiffness B. Using the TMM, determine the center deflection δC obtained 
with the two limit values of stiffness B. 
 
Available Matlab® file: Example_4_4.m 
 
Results: 
With 20 elements: 
Minimum stiffness B = Bmin  δC = 22.366 mm 
Maximum stiffness B = Bmax  δC = 7.499 mm 
 
The same values were found in Example 4.1. These results hold with any number of elements. Indeed, 
within the bounds of the classical beam bending theory, the TMM is an “exact” method. 
 
 
4.6 APPLICATION TO THE VARIABLE STIFFNESS CASE 
 
When limit curvature κm,1 is reached at points A, B and C, and assuming the elements behave as in the 
uniform curvature case, the outer layer starts slipping as force P is increased beyond the limit value P1 . 
Some elements enter the Phase II described in section 4.4. Here, like the FEA method, the TMM 
method becomes approximate. The algorithm has to determine which elements have entered Phase II. 
Then, their bending stiffness has to be modified to B1, and a residual friction moment Mrf,1 must also 
act on these elements (Eqs (4.15) and (4.16)). For a given element, one value of curvature has to be 
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considered, which will be taken as the average of the nodal curvatures (the ends of each element). In 
order to follow the slip propagation, one has to increment the transverse force by steps ∆P, up to the 
required maximum force Pmax. 
 
The problem with the boundary conditions 
In the Fig. 4.1 set-up, specimen is clamped at points A and B. This is contradictory with the above 
hypothesis that elements in these regions behave as in the constant curvature bending where inter-layer 
slip is directly related with the local curvature. Instead, one would expect slip to be completely 
impeded at points A and B, with a transition in adjacent elements. This local effect will be first 
neglected and, following Papailiou’s hypothesis, it will be assumed elements at the clamped ends 
behave as in the constant curvature case of Chapter 3. 
 
Example 4.5 
 
In the Fig. 4.1 set up, conductor specimen is the Cardinal ACSR. Length of specimen AB is L = 1 m. 
Applied axial force is T = 40 kN. It is loaded transversely at point C by a force Pmax = 4 kN. Using the 
approximate polygonal (M,κ) diagram of the conductor, and the TMM, determine the center point 
deflection δC vs P, as P increases monotonously from 0 to Pmax . 
 
In Matlab® file Example_4_5.m, for each load step ∆P, total values in nodal bending moment, slopes 
and displacements are computed at each step for the incremented total load. 
 
In order to define the polygonal (M,κ) diagram, median limit values, which have been found in 
Chapter 3 have to be given as input in the file. Here the selected case corresponds to data obtained in 
Example 3.8 with coefficient of friction µ = 0.7 and slip conditions SC2. They are:  
 
Median limit curvatures:  κm = [1.57  6.43  16.38  25.95] 10-5 (1/mm) 
Median limit moments:  Mm = [2.808  6.124  8.176  8.929] 104 N.mm 
 
Slopes of the polygonal (M,κ) diagram are: 
Zero-slip phase : 9 2

0 maxB B 1.7846 10 N.mm= = ×  , and for each slip phase:  

B = [6.8280    2.0612    0.7873    0.2775] 108 N.mm2 
 
Total residual friction moments in each phase are Mr = [1.734  4.799  6.886  8.209] 104 N.mm 
 
Here, the selected number of elements in half-span AC is n = 100. They all have the same length Li = 5 
mm. Load P is incremented by steps ∆P = 100 N. After each increment, the mean value of nodal 
moments acting on element (i) is compared with limit values given in Mm. Then, element stiffness B,i 
and residual friction moment Mrf,i for each element (i) are modified accordingly. With these updated 
element parameters, the TMM is applied, yielding transverse displacement, slope and moment at each 
node. Value of center point deflection δC is obtained for the current value of force P. 
 
When the requested maximum value Pmax has been reached, the Matlab® function generates a curve P 
vs δC (output figure 1). It also generates the following curves, as a function of abscissa x, over the half 
length AC: node deflection v(x) (output figure 2), slope v (x) (x)′ ≅ ϕ  (output figure 3), curvature (x)κ  
(output figure 4), secant bending stiffness Bsec (output figure 5), as defined in Eq.( 4.16). On these 
figures, Papailiou’s (1995) results, for the same conductor and load parameters are also shown, as well 
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as his test data. Output figure 6 shows the slip stage of the beam elements, from stage 0, no slip, to 
stage 4, with all layers slipping. 
 
Curve P vs δC (output figure 1) is shown in Appendix D (Fig. D.3). At Pmax = 4 kN the TMM model 
yields C 16.8 mmδ = . This value is higher than the one found in Papailiou’s tests (10.2 mm). His own 

calculations, based on the FEA method yield about 11 mm.  
 
The main difference comes apparently from slip conditions at points A and C. TMM results show near-
minimum bending stiffness Bmin applies in the clamped end and center regions. As already mentioned, 
this contradictory with the clamped end boundary condition. Indeed, in these regions, layers are 
constrained and cannot slip freely. In fact, at point A, there should be no slip at all, and element 
stiffness should be Bmax (0 stage). Papailiou’s numerical results also show partial slip (apparently, stage 
3 slip) at these points. It is not clear how the clamping conditions can be made compatible with such 
slip state. Also, it is doubtful slip states can be assumed to be identical at points A and C, since center 
point C is not a clamp and slip can be expected to develop there.  
 
The current model could be improved by assuming that at points A and C, element stiffness has to 
remain at its Bmax value. It is not clear however, how a transition zone could be programmed between 
these blocked elements and the free elements. 
 
Instead, the current TMM results might be of some interest for a slightly different experimental set up, 
where rigid clamps are replaced by simple supports (Fig. 4.4). 
 

 

T 
P 

L/2 L/2 

A B 

C 

 

Figure 4. 4 

 
Then, conditions at A and B are somewhat similar to those found at a standard suspension clamp.  
 
From the curve P vs δC (Fig. D.3) it is seen that, as load P increases, the curve becomes practically 
parallel to the Bmin straight line which is similar to the curves obtained by McConnell & Zemke (1980).  
Assuming the equivalent stiffness Beq can still be obtained from Eq. (4.12) (as do these authors) and 
taking for example the result yielded by the function Example_4_5, and using the Example_4_2.m file 
(with C 16.8 mmδ = ), one gets eq minB 9.93 B= . That equivalent bending stiffness, while lower than the 

one obtained from Papailiou’s data, is higher than the one found by McConnell & Zemke (1980) for 
various conductors (with a set-up similar to the one shown in Fig. 4.4). Also, the P vs δC TMM curve of 
Fig. D.3 compares well with the one shown in Foti & Martinelli (2011); starting with the Bmax slope, it 
then curves, as P increases, to become parallel to the Bmin straight line. 
 
 



 

62 
 

Conclusions 
It has been shown in the above free bending problem, that variable bending stiffness has to be 
considered in the calculations. Uniform curvature results have been used to get approximate results 
through the TMM numerical method. Problems arise, obviously, at clamped ends where, by definition, 
inter-layer slip is blocked, contradicting results which show minimum stiffness elements in these 
regions. Consequently, one should not use this approximate analysis to get local quantities such as 
stresses. 
 

 

4.7 SMALL-AMPLITUDE CYCLING NEAR A CLAMP 
 
The conductor-suspension clamp system 
Rather than the square-faced clamps which are implied in the Fig. 4.1 system, a more practical situation 
is the one found in overhead electric transmission conductors. The simplest case arises when the 
conductor is held with standard clamps made of a supporting body and a bolted keeper (Fig. 4.5) 

 
 
 
 
 
The shape of the conductor, where most of the span is concave upward, with a local downward 
concavity at each suspension clamp, calls for a point of inflexion somewhere in the vicinity of the 
clamp. The situation is thus similar to the one encountered in the preceding section and it is to be 
expected that in the laying operation of the conductor, total interlayer slip will occur near the exit 
points from the clamp, usually called the “Last Point of Contact”, or LPC, for short. Outside the clamp, 
conductor curvature varies from a maximum at the LPC to zero at the point of inflexion, and it is thus a 
case of varying bending stiffness. 
 
Some experimental evidence about the static shape of a conductor in the vicinity of a suspension clamp 
has been obtained by Dalpé (1999). In the immediate vicinity, it has been found the curve follows 
closely a constant stiffness curve with stiffness B = Bmin . It is even found that, in some cases, for the 
selected axial tension T of 25% RTS (conductor Rated Tensile Strength), the corresponding B is 
slightly lower than Bmin, which could be explained by a plastic behaviour in some wires. Such plasticity 

Figure 4. 5 (Cloutier & Hardy, 1988) 
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has indeed been found by Ramey et al. (1981) when measuring strain on the outer layer of a bent 
conductor at a clamp. 
 
Thus, it is doubtful the above variable stiffness calculations based on the constant curvature elastic 
models are of any help in explaining the free bending shape of a conductor near a clamp. The constant 
curvature model should rather be viewed as a tool which can be helpful in explaining conductor inner 
mechanics and interpreting some experimental results obtained in the Aeolian vibration field. 
 
Small amplitude bending cycles 
It is well known that conductor Aeolian vibration is a small amplitude phenomenon which occurs once 
the conductor is in place and has undergone large quasi-static bending. According to  the moment-
curvature curve seen in Chapter 3, as explained with the stick-slip model (Appendix C), small 
amplitude vibration will be represented by a small straight line A0A1, whose slope will be the 
maximum stiffness B0 (Fig. 4.6), with no subsequent slip. This is a purely elastic cycle which induces 
relatively small amplitude alternate bending stresses in the conductor strands, and it is such stress 
cycling which has been used traditionally to estimate the fatigue strength of a conductor. 
 

Thus, if one is interested in the fatigue problem, rather 
than in the conductor overall deflected shape, the analysis 
may be restricted to the uniform stiffness bending 
situation. Indeed, in the clamp vicinity, between the LPC 
and the point of inflexion, whatever the slip stage in a 
given section, the small amplitude bending cycle will be a 
B0 slope straight line. 
 
Note also that, with this model, the A0A1 cycling is a 
straight line, with zero energy loss, and thus zero 
damping. It is obviously inadequate for vibration studies 
(on this topic, see: Rawlins, 2009). 
 

 
Instead of the practical conductor-suspension clamp, consider again the clamped-clamped specimen 
shown in Fig. 4.1. The center point deflection under a transverse load P = Pmax has been computed 
numerically in Example 4.5. In the following example, attention is given to the behavior of a conductor 
section located not too far from the left-hand clamp A when load P decreases by ∆P.  
 
Example 4.6 
 
In Example 4.5, using the TMM, the displacement at center point C, under maximum load Pmax = 4 kN 
is 16.84 mm

C
δ = .  At a distance a = 90 mm from clamped end A, the corresponding displacement is 

found to be v 2.4211 mm=  (displacement of node No i = 18, with 5 mm elements). Now, if there is a 
small decrease P 100 N∆ =  , displacement v∆  has to be calculated based on a uniform B0 bending 
stiffness of the specimen AB. Deflection v(x) is given by Eq. (4.10).   
 
Available Matlab® file: Example_4_6.m 
 
Result: 
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v(a) 0.00167 mm∆ =   
Departure from initial deformed curve (under Pmax = 4 kN), is quite small, even with unloading 
amplitude P 1kN∆ = . 
 
It has been found in Example 4.3 that, in the load phase, slip begins in the outer layer when 

1P 250.8 N=  . According to the stick-slip rheological model (Appendix C), the preceding calculation 

(purely elastic unloading behaviour) is valid up to 1P 2P 2 250.8 501.6 N∆ = = × =  . Beyond this value, 

there will be a reverse slip. This would correspond to a displacement at node 18 (a = 90 mm) greater 
than v(a) 0.0084 mm∆ =  . If ∆P is now applied in the reverse direction, in order to reach again the Pmax 
level, the (P vs δC) cycle will be an hysteretic cycle 
 
Fatigue criteria: displacement, curvature or stress 
Rather than the displacement at the center point C, it is often more convenient to consider the 
displacement at a point A’ at some distance a from clamp A, such as in Example 4.6. And if a constant 
amplitude cyclic load ∆P is imposed at C, it is equivalent to consider the ∆v(a) at A’. If fatigue tests are 
performed by repeating the cycle ∆P, it is also more convenient to express the fatigue results in terms 
of the ∆v(a) amplitude. In principle, another parameter could be used, the curvature cycle ∆κ(0) at or 
very close to clamp A. Curvature κ(0) follows qualitatively the same type of curve when drawn versus 
load P and versus bending moment MA. Thus, in the ∆P cycle, both κ(0) and v(a) undergo a closed 
cycle (if ∆P is large enough). Amplitudes ∆v(a) and ∆κ(0) are directly related and fatigue test data may 
be expressed in terms of either one of these parameters.  
 
While these parameters are probably better suited for fatigue strength evaluation, being related to 
global section behaviour, people generally prefer to express strength problems in terms of stress, rather 
than displacement amplitude or, worse, curvature. Hence, the problem arises of relating the ∆v(a) and 
∆κ(0) amplitudes and cycles to some kind of ∆σ amplitude. For small amplitudes, as in the A0A1 cycle 
of Fig. 4.6, this is not too difficult, as the stick-slip model predicts a purely elastic behaviour with 
maximum stiffness B0. If the amplitude is larger, however, slip occurs in some contact regions, and one 
may wonder which ∆σ should be selected. This question is examined in the next chapter. 
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CHAPTER 5 
 
STRESS CALCULATIONS IN SMALL AMPLITUDE CYCLIC BENDING 
 
 
5.1 INTRODUCTION 
 
In the vicinity of a suspension clamp, Aeolian vibration is a small amplitude phenomenon which is 
superimposed on the quasi-static conductor equilibrium curve. While the dynamic response of an actual 
conductor span in the field is rather complex (EPRI 2006), laboratory fatigue tests use relatively short 
specimens under traction. These specimens are vibrated using an electrodynamic shaker (Lévesque et 

al., 2011), and it is the resulting transverse motion which is used to study the fatigue performance of a 
given conductor-clamp combination. In this chapter, the problem is restricted to the quasi-static case, in 
which the conductor own inertia is neglected, and bending is supposed to result from the application of 
a transverse force. Again, uniform bending stiffness is assumed. 
 
5.2 SMALL AMPLITUDE BENDING CYCLE 
 
Consider again the clamped-clamped specimen shown in Fig. 4.1. Conductor inertia is neglected, and 
the bending cycle can be obtained by assuming the center transverse load P undergoes a ∆P cycle. A 
decrease ∆P of transverse force P will correspond to an unloading displacement ∆v(x) given by 
Eq. (4.10) (purely elastic no-slip case): 
 

L
cosh 1P 2v(x) ( x sinh x) (cosh x 1)

L2 T sinh
2

λ 
− ∆

∆ = λ − λ + λ − λλ  
 

   (5.1) 

 
with 2 T Bλ = . Now, assume displacement ∆v = Yb is known at a distance a from clamped end A. 

Corresponding force decrease ∆P can be obtained from Eq. (5.1), and bending moment variation at A is 
given by: 
 

0

L
cosh 1P 2M

L2 sinh
2

λ 
− ∆

∆ =  λλ  
 

       (5.2) 

 
Thus, ∆M0 can be directly obtained through: 
 

( ) ( )
0 b

L
cosh 1

2M TY
L L

sinh a sinh a cosh 1 cosh a 1
2 2

λ
−

∆ =
λ λ 

λ − λ + − λ − 
 

  (5.3) 
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Curvature variation ∆κ is given by 0 0M B∆  . For small amplitudes, the conductor is supposed to 

behave like a solid beam (Fig. 4.6). The corresponding strain at top most fibres is x O1D 2ε = ∆κ , DO1 

being the conductor outer diameter. As explained in Chapter 1, corresponding strain in the wire axis 
direction is 2

w x 1cosε = ε α . Thus, the maximum cyclic stress amplitude ∆σ which occurs in the wire 

most remote from the strand neutral axis is: 
 

( ) ( )

2
O1 1 b

0

L
cosh 1ED cos TY 2

L L2 B sinh a sinh a cosh 1 cosh a 1
2 2

λ
−

α
∆σ =

λ λ 
λ − λ + − λ − 

 

  (5.4) 

 
Example 5.1 
 
Again, consider the case of conductor Cardinal ACSR, under axial load T = 40 kN. Length of specimen 
is 1 m. Assume amplitude Yb has been measured at distance a = 89 mm (3.5 in.). Determine stress 
amplitude ∆σ at the clamp for an amplitude Yb = 0.2 mm. 
 
Available Matlab® file: Example_5_1.m. 
 
Result: 
It is found that 55.6 MPa∆σ = . This is a peak to peak value. Thus if one considers a vibrating 

conductor, the cyclic stress amplitude is a / 2 27.8 MPaσ = ∆σ =  

 
Also of interest is the strain peak to peak amplitude, / E∆ε = ∆σ . Expressed in micrometer/meter, in 
this example, one finds 855 m / m∆ε = µ . 
 
The length L of specimen AB has some influence on the result. In the case of a conductor near a 
suspension clamp, it should be eliminated by letting L go to infinity.  
 
Long specimen case 
In such case, Eq. (5.4) may be approximated as: 
 

( ) ( )

2
O1 1 b

0

ED cos TY 1

2 B a sinh a cosh a 1

α
∆σ

λ − λ + λ −
�     (5.5) 

 
Example 5.2 
 
Same as Example 5.1, except that, now the approximate ∆σ given by Eq. (5.5) is calculated and may be 
compared with the “exact” value given by Eq. (5.4). Solve the problem with L = 1 m and L = 2 m. 
 
Available Matlab® file: Example_5_2.m (adjust parameter L) 
 
Results:  
a) L = 1 m ap55.56 MPa and 53.69 MPa∆σ = ∆σ =  
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b) L = 2 m ap53.85 MPa and 53.69 MPa∆σ = ∆σ =  

 
It is seen the limit value is reached rather quickly as the specimen length increases. 
 
Eq. (5.5), which holds for long enough specimens, may be recast by replacing the hyperbolic functions 
by their exponential equivalent, and also recall that, by definition, 2 T Bλ = . This yields: 
 

2 2
O1 1

ba

ED cos
Y

2 e a 1−λ

α λ
∆σ

+ λ −
�      (5.6) 

 
This expression is similar to the one derived by Poffenberger and Swart (1965), with the difference 
that, in Eq. (5.6), the conductor is supposed to behave as a solid beam, with bending stiffness Bmax. 
Also, the lay angle effect is kept in Eq. (5.6), while being neglected by Poffenberger and Swart. 
 
 
5.3 THE POFFENBERGER AND SWART STRESS 
 
The classical bending stress due to Poffenberger and Swart (1965) is easily obtained from Eq. (5.6). It 
is based on the complete slip assumption where all wires are independent. In such case, B = Bmin, and 
the conductor outer diameter DO1 has to be replaced by a wire diameter, dw. Also, as already 
mentioned, wire lay angle is neglected. The cyclic stress amplitude a 2σ = ∆σ  is thus given by: 

 
2

w
a ba

Ed
Y

4 e a 1−λ

λ
σ =

+ λ −
      (5.7) 

 
in which 2

minT Bλ = . 

 
Example 5.3 
 
Again, consider the case of conductor Cardinal ACSR, under axial load T = 40 kN. Assume amplitude 
Yb has been measured at distance a = 89 mm (3.5 in.). Determine the Poffenberger and Swart cyclic 
stress amplitude σa for an amplitude Yb = 0.2 mm. 
 
Available Matlab® file: Example_5_3.m. 
 
Result:  a 6.45 MPaσ =  

 
Compare this value to a 26.8 MPaσ =  yielded by the zero slip hypothesis (with maxB B= ). Note also 

that the corresponding cyclic strains are given by a a Eε = σ  and, with the preceding data: 

a 99 m / mε = µ  for minB B= and  a 413 m / mε = µ  for maxB B=  
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5.4 STRESS EVALUATION IN THE STICK-SLIP REGIME 
 
In the preceding cases, based on uniform bending stiffness Bmax or Bmin (Poffenberger and Swart), 
using stress amplitude ∆σ is equivalent to using amplitudes ∆κ(0) or ∆v(a) = Yb . Which are actually 
extreme values.  
 
When amplitude ∆P is not so small, slip regions do occur, starting in the outer layer near the conductor 
section “neutral axis”. They start at critical points A and C of the clamped-clamped specimen (Fig. 
4.1). While the exact slip process is gradual, starting at or near the “neutral axis”, Papailiou’s simplified 
model neglects the transition phase and assumes that complete or total slip occurs at once in the outer 
layer, leading to the polygonal (M vs κ) diagram. 
 

In the cycle of amplitude ∆P, the (M vs κ) cycle at or 
near the clamp is shown in Fig. 5.1. According to the 
present stick-slip model, there is a small reverse slip 
cycle corresponding to lines A1A2 and A3A0. Along 
A1A2, wire material in the outer layer, undergoes a small 
displacement from the tension side to the compression 
side (considering only the bending effect). Along A3A0, 
there is a reverse displacement in the opposite direction.  
 
In such a wire, variation of stress arises from: a) 
variation of curvature ∆κ; b) variation ∆F1 of tensile 
force on the wire cross-section. Thus : 
 

a b∆σ = ∆σ + ∆σ     (5.8) 

 
  
Component a 1 1E d 2∆σ = ∆κ  coincides with the Poffenberger and Swart formula (Eq. 5.7), when slip is 

complete at all interfaces (all wires bend independently). Component b∆σ  is due to the slip reversal 

along the contact line. In the slip state, with slip conditions (SC4), F1 is given by Eqs. 3.41 and 3.42, 
and ∆F1 is: 
 

( ) ( )1 12 2
1 T1 T1 1F F e e 2F sinh 2λ π −λ π∆ = − = λ π     (5.9) 

where 1 1 1sinλ = µ α .  

 
Example 5.4 
 
Again, consider the case of conductor Cardinal ACSR, under axial load T = 40 kN. The clamped-
clamped specimen shown in Fig. 4.1 is loaded by transverse load P up to maxP 4 kN=  . It is then 

unloaded by ∆P such that 5 14.810 mm− −∆κ =  , then reloaded to Pmax. From Example 3.5b, this means 
that there is reverse slip on the outer layer. The cycle is as shown in Fig. 5.1. Friction coefficient is 0.7. 
Determine stress amplitude ∆σ. 
 
Available Matlab® file: Example_5_4.m. 
Matlab® file Example_1_2a.m is used to get force FT in wires of layer 1: TF 63.5 N=   

∆κ 0 κ 

Mm,1 

Mm,2 

Mm,3 

Mm,4 

B0 

B1 

B2 

B3 

B4 A0 

A1 

M 

A2 

A3 

Figure 5. 1 
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Results: 

a b3.57 MPa 8.41 MPa∆σ = ∆σ =   

 
If curvature variation amplitude ∆κ is increased, inner layers may slip and a∆σ has to be calculated 

accordingly. However, component b∆σ  remains a constant in the cycle (with these slip conditions). 

This small friction component is neglected in the Poffenberger and Swart formula (Eq. 5.7). Besides, in 
Eq. 5.7, tangent bending stiffness Bmin is used instead of the secant stiffness. 
 
 
5.5 PRACTICAL CONSIDERATIONS 

 

5.5.1 Comparison with available experimental data  
 
Much attention has been paid to the level of cyclic strain in vibrating conductors in the vicinity of a 
suspension clamp. An exhaustive survey and comparison of results can be found in Goudreau et al. 
(2010).  
 
In general, these measurements are made on long, taut vibrating specimens of a conductor and in order 
to compare the strain levels, a given vibration amplitude is imposed on the specimen. For example, 
eight conductors were tested by Claren and Diana (1969). Specimens were 25 m long. They were 
rigidly held with square-faced aluminum clamps, instead of suspension clamps. Strain gages were 
positioned close to one clamp (exact distance is not given, authors say “placed just out of the clamp”), 
on the extreme fibres of the conductor, when considered as a uniform solid beam, that is, on wires 
located at distance DO1/2 from the section neutral axis. In the ensuing discussion by Poffenberger and 
Komenda (1969), some of their results were redrawn for comparison with the theoretical curve given 
by Eq. (5.7), based on the B = Bmin hypothesis. It is clear from the corresponding figure (Fig. 14 of the 
paper) the strain measurements do not follow that curve. The discussers attribute the scatter to the very 
low bending amplitudes imposed in those tests, lower than “10 mils”, i.e. lower than 0.25 mm.  
 
Indeed, the stick-slip model predicts that for small amplitudes, there should be no interlayer slip, and 
bending stiffness should be B = Bmax. Unfortunately, while Claren and Diana (1969) define a “slippage 
parameter”, its variation with bending amplitude is not shown. They only give its variation with axial 
load T. Compared with the maximum stiffness hypothesis, the actual measured strains are smaller than 
predicted. This holds even for small bending amplitudes or, with the present notation, stiffness 

maxB B<  . Most probably, this discrepancy comes from the complex state of stress and strain arising at 

each wire contact point. This fact cannot be neglected when the objective is to predict conductor 
fatigue strength under bending. 
 
5.5.2 On the usefulness of bending stress or strain evaluation 
 
It is well known that conductor fatigue failures in small amplitude vibration such as Aeolian vibration 
originate most of the time at contact points (EPRI, 2006) that is, at places where the state of stress, 
strain and displacement (with a possible corresponding slip) is complex, and rather difficult to evaluate. 
Yet, conductor fatigue prediction is usually based on bending stress and strain levels which are 
obtained either from analytic models, which can be as simple as Eq. (5.7) (Poffenberger and Swart, 
1965), or as sophisticated as Papailiou’s model (1995), or from experimental techniques, such as strain 
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gage measurements on individual wires. These stress and strain levels are certainly good indicators of 
the vibration amplitude severity, and there should be a strong correlation between such levels and 
conductor fatigue performance, even if the calculated levels cannot be related with the intrinsic fatigue 
properties of the wire material itself. A conductor bending fatigue evaluation based on these indicators 
should not be compared with the corresponding evaluation found in the machine design field where, for 
example, a given shaft fatigue strength is based on the material S/N curve. 
 
Yet, even if this approach is practical, more information can be obtained by looking at the actual 
conditions prevailing in the contact regions.  
 
5.5.3 Elastic compliance at contact points 
 
In the stick-slip model presented in Chapters 2 to 4, relative motion of contacting wires may occur only 
when the tangential force at a contact point reaches a maximum given by Coulomb’s law. It has been 
shown by Mindlin (1949) that, when contacting bodies in contact are elastic, relative displacements do 
occur even below this limit tangential force. 
 
The problem has been studied in detail for elastic spheres in contact by Mindlin and Deresiewicz 
(1953). In this case, an exact analytical solution can be obtained because of the simple circular contact 
zone. The notion of tangential compliance has later been applied to cables by Raoof (1983). It has been 
applied to conductor bending near a termination by Leblond and Hardy (2005).  
 
Here, it can simply be said, when looking at a conductor global behaviour, such a tangential 
compliance is equivalent to adding a spring in series with the slider in the rheological models presented 
in Chapter 2 and in Appendix C. The result is that maximum bending stiffness Bmax can never be 
reached (Leblond and Hardy, 2005). This may explain why, in very small amplitude vibration 
experiments, the measured bending stiffness is somewhere around Bmax/2 , depending on the axial load 
on the conductor (Claren and Diana, 1969), while the simple stick-slip models would predict a stiffness 
equal to Bmax.  
 
As shown by Mindlin (1949), the tangential compliance is coupled with a microslip region and, when 
the contact region is subjected to small amplitude cycling, fatigue cracks may indeed appear and lead to 
complete wire fracture, under what is called fretting fatigue (EPRI, 2006). Unfortunately, no analytical 
model is currently available in order to predict its occurrence and only empirical laws based on 
experimental data have been proposed. 
 
In actual conductor-clamp systems (Fig. 4.5), the contact problem is even more complex, as the outer 
layer wires are in contact with the clamp itself. It is also found that under practical conditions, wire 
material, generally soft electrical grade aluminum, undergoes small plastic deformation in the contact 
regions. Needless to say, no analytic solution exists for this situation and, in order to make numerical 
predictions, one has to resort to approximate techniques such as the Finite Element Analysis (Lévesque 
et al., 2011). 
 
Thus, stick-slip models which have been proposed in the literature for the conductor bending problem, 
the features of which have been summarized in this work, should not be expected to provide 
quantitative answers in fatigue strength evaluation situations. Yet, compared with the purely elastic 
approach (Costello, 1997) they provide a useful insight on the phenomenon, as well as a basis for a 
better interpretation of experimental results. 
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APPENDIX A 

 

TYPICAL CONDUCTOR DATA 
 
Note: layers are numbered starting from the outer layer inwards. Here, layer 1 is always the outer layer. 
 
A.1 Bersimis ACSR (Lanteigne, 1985) 
 

Layer 

 

No 

Young’s 

Modulus 

MPa 

Number 

of wires 

Lay length 

 

mm 

Lay angle 

 

degrees 

Lay radius 

 

mm 

Radius of 

wire 

mm 

core 200x103 1 n/a n/a n/a 1.270 
4 200x103 6 171 5.33 2.540 1.270 
3 69x103 8 258 8.44 6.096 2.286 
2 69x103 14 299 12.64 10.668 2.286 
1 69x103 20 380 14.14 15.240 2.286 

Table A. 1 

Overall diameter of conductor: 35.05 mm 
Rated Tensile Strength: 154.57 kN 
Three aluminum layers (i = 1 to 3) and steel core (i = 4 and core wire) 
 
 
A.2 Cardinal ACSR (Papailiou, 1995) 
 

Layer 

 

No 

Young’s 

Modulus 

MPa 

Number 

of wires 

Lay length 

 

mm 

Lay angle 

 

degrees 

Lay radius 

 

mm 

Radius of 

wire 

mm 

core 210x103 1 n/a n/a n/a 1.67 
4 180x103 6  6.06 3.34 1.67 
3 65x103 12  11.99 6.67 1.66 
2 65x103 18  12.64 9.99 1.66 
1 65x103 24  14.14 13.31 1.66 

Table A. 2 

Also, from (EPRI, 2006): 
Overall diameter of conductor: 30.378 mm 
Rated Tensile Strength: 150.35 kN (Std. Weight Coating) 
Three aluminum layers (i = 1 to 3) and steel core (i = 4 and core wire)  
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A.3 Drake ACSR  
 

Layer 

 

No 

Young’s 

Modulus 

MPa 

Number 

of wires 

Lay length 

 

mm 

Lay angle 

 

degrees 

Lay radius 

 

mm 

Radius of 

wire 

mm 

core 200 x103 1 n/a n/a n/a 1.735 
3 200 x103 6  5.0  1.735 
2 69 x103 10  12.96  2.221 
1 69 x103 16  15.67  2.221 

Table A. 3 

Overall diameter of conductor: 28.14 mm 
Rated Tensile Strength: 140.12 kN 
Two aluminum layers (i = 1 and 2) and steel core (i = 3 and core wire) 
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APPENDIX B 

 

MISCELLANEOUS THEORETICAL PROOFS 
 
B.1 DISTANCE BETWEEN CONTACT POINTS (STRAIGHT CONDUCTOR) 
 
Lay angles on contact cylinders 
 
Contact between layers (i) and (i+1) takes place on the contact cylinder, radius RCi. Points of contact 
are the intersection points of wire extreme “fibres”: the inner one for layer (i), and the outer one for 
layer (i+1). These fibres are helical curves having practically the same lay length as the center line 
helix. However, because the contact cylinder radius is slightly different than the lay cylinder radius, the 
helix angle is also different. 
 

Take for example layer (i) : 
 

i i i i
i

i i i

i i
i i i

i i

2 (R r ) 2 R 2 r
tan

h h h

2 r r
tan tan 1 tan

h R

π − π π
′α = = −

 π
′α = α − = − α 

 

(B.1) 

 
Since ratio i ir h  is small, the difference 

between i′α  and iα  is also small (at least for 

the outer layers. 
 
Example B.1 
 
Outer layer (i = 1) of Bersimis ACSR 
(Appendix A) :  
r1 = 2.286 mm 
h1 = 380 mm 
α1 = 14.14 deg. 
 
Eq. (B.1) yields 1 12.09deg.′α =  

For complete results, use Matlab® file Example_B_1.m 
 
Results: 
Lay angle of wire centerline (deg.): [14.14  12.64  8.44  5.33] 
Radius of contact cylinders (mm) :  [15.24  10.67  6.10  2.54] 
Corrected lay angle of inside contact fiber (deg.) : [12.09  9.99  5.30  2.67] 
Corrected lay angle of outside contact fiber (deg.) : [16.16  15.23  11.53  7.97] 
 
Distance between points of contact on a given wire 
 
Consider, for example, the case i = 1. Radius of contact cylinder C1 1 1 2 2R R r R r= − = +  

 

α’i 

2π(Ri - ri) 

hi 

hi+1 

α’i+1 

2π(Ri+1 + ri+1) 

Figure B. 1 



 

77 
 

Layer (1) contact fibres are, say, right-hand lay helices, while layer (2) contact fibers are left-hand 
helices. The problem is to find the distance between the intersection points of helix (1) with two 
adjacent helices (2). 
 
It can be solved in the plane by “slitting” the contact cylinder along one of its generators and laying it 
flat (Fig. B.2). Helices are now straight lines. Line AA’ is one of the helices (1). Assume A is a point 
where it is intersected by one helix (2). The next point of intersection will occur with the helix which is 
offset by a distance C1 2AC 2 R n= π  , n2 being the number of wires in layer (2) on the vertical edge of 

the rectangle. Point B is the next point of intersection on AA’. Since the angles 1 2and′ ′α α  are known, 

calculating the length of AB is now an elementary geometry problem. 
 

 

2πRC1 

2πRC1/n2 

A 

B 

C 

D 

α’1 

α’2 

A’ 

 

Figure B. 2 

  

Calling D the orthogonal projection of point B on AC, one has: 
 

1 2DB ABcos CBcos′ ′= α = α       (B.2) 

 

C1
1 2

2

2 R
AC ABsin CBsin

n

π
′ ′= = α + α     (B.3) 

 
Combining Eqs (B.2) and (B.3), one gets: 
 

C1 2

2 1 2

2 R cos
AB

n sin( )

′π α
=

′ ′α + α
      (B.4) 

 
It is easy to generalize it to any layer (i): 
 

Ci i 1
Ci

i 1 i i 1

2 R cos
AB d

n sin( )
+

+ +

′π α
= =

′ ′α + α
     (B.5) 

 
where i′α  is the corrected lay angle for the inside contact fiber of layer (i) while i 1+

′α  is the corrected 

lay angle for the outside contact fiber of layer (i+1). This is the same equation as in Chouinard (1994), 
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except for the fact that, in his equation, the lay angles αi and αi+1 have to be replaced by their corrected 
values i i 1and +

′ ′α α , given by Eq. (B.1). 

 
Papailiou’s Equation (Papailiou, 1995) 
 
In Papailiou’s thesis (1995), the number of contact points between layers (i) and (i+1), over a lay length 
of a wire in layers (i) and (i+1) is given in his Eqs (3.1) (layer i) and (3.2) (layer i+1) (page 46). For 
example, in layer (i), this number Cin  is, using our notations: 

 

i i 1
Ci i 1

i 1 i

R tan
n n 1

R tan
+

+

+

 α
= + 

α 
      (B.6) 

 
where the plus sign has been selected in Eq. (3.1), corresponding to the usual alternate lay structure. 
Unfortunately, no details are given in (Papailiou, 1995) on how Eq. (B.6) was derived.  
 
Now, accordingly, the axial distance (measured on the conductor x axis) of these contact points is: 
 

i i i 1 i
xi

Ci i i 1 i i 1 i 1 i

h 2 R R tan1
d

n tan n R tan R tan
+

+ + +

π α
= =

α α + α
   (B.7) 

which yields: 
 

i i 1
xi

i 1 i i 1 i 1 i

2 R R1
d

n R tan R tan
+

+ + +

π
=

α + α
     (B.8) 

 
The actual distance of contact points, measured on the wire centre line is: 
 

xi i i 1
Ci

i i 1 i i i 1 i 1 i

d 2 R R1 1
d

cos n cos R tan R tan
+

+ + +

π
= =

α α α + α
   (B.9) 

 
Assuming layers (i) and (i+1) have equal wire radius ri,  
 

i Ci i i 1 Ci iR R r and R R r+= + = −      (B.10) 

 
Letting the ratio i i Cir Rγ = , Eq. (B.9) yields: 

 
2

Ci i 1
Ci

i 1 i 1 i i i 1

2 R (1 ) cos
d

n (1 )sin cos (1 )sin cos
+

+ + +

π − γ α
=

+ γ α α + − γ α α
  (B.11) 

 
which can be compared with Eq. (B.5). Eq. (B.11) agrees with Chouinard’s when γ is very small.  
 
Example B.2 
 
Consider the outer layer (layer 1) of the Bersimis ACSR conductor. Determine the distance between 
contact points on a given wire of this layer. Compare results given Eqs. (B.5) and (B.11). 
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Results: 

From Example B.1: 1 2 1 2

C1 1 2

n 20 n 14 14.14 12.64

R 15.24 mm 12.087 15.233

= = α = α =

′ ′= α = α =

� �

� �
 

 
Eq. (B.5) yields C1d 14.38 mm=  (Chouinard’s equation yields 14.54 mm) 

While in Eq. (B.11)  1 1 C1r R 2.286 15.24 0.15γ = = =  and C1d 5.72 mm=  

 
 
B.2 NUMBER OF CONTACT POINTS 
 
Number of contact points over a lay length of layer (i) 
 
According to Eq. (B.5), the number of contact points nCwi between a wire of layer (i) and all wires of 
layer (i+1) over a lay length hi of layer (i) is: 
 

i i i 1 i i 1
Cwi

Ci i Ci i 1

L h n sin( )
n 1 1

d cos( ) 2 R cos
+ +

+

   ′ ′α + α
= + = +   ′ ′α π α   

  (B.12) 

 
where Li is the wire length . The notation x    is used to represent the integral part of x. It is also called 

the “floor function”. The “1” term is added because there is one more contact point than the number of 
intervals i CiL d   . This equation reduces to: 

 

i 1 i i 1
Cwi

i i 1

n sin( )
n 1

sin cos
+ +

+

 ′ ′α + α
= + ′ ′α α 

     (B.13) 

 
It is the same as the one found by Chouinard (1994), apart from his use of helix angles i i 1and +α α  

instead of i i 1and +
′ ′α α  , and his neglect of the “floor function”, leading to a number of points which is 

not an integer. Eq.(B.13) may also be written as: 
 

i 1
Cwi i 1

i

tan
n 1 n 1

tan
+

+

  ′α
= + +  

′α  
     (B.14) 

 
The total number of contact points at the interface between layers (i) and (i+1), over a lay length hi of 
layer (i) is of course i Cwin n× .  

 
Number of contact points over a conductor unit length at interface (i) 
 
This calculation is performed in order to compare these results with a formula used by Rawlins (2009). 
The number of contact points on interface (i), over a conductor unit length is: 
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i 1
Cui i i 1

i i

tan1
n n 1 n 1

h tan
+

+

   ′α
= × + +    ′α    

    (B.15) 

which yields: 
 

i i 1
Cui i i 1

Ci i

tan tan
n n 1 n 1

2 R tan
+

+

   ′ ′α α
= × + +    ′π α    

    (B.16) 

 
and: 
 

( ) i i 1
Cui i i 1 i 1

Ci Ci

tan tan
n n 1 n n

2 R 2 R
+

+ +

 ′ ′α α
= × + + 

π π 
    (B.17) 

 
Finally, in terms of the lay lengths, one gets: 
 

Cui i i 1
i i 1 i

1 1 1
n n n

h h h+

+

  
= × + +  

  
     (B.18) 

 
Comparison with Rawlins (2009) 
 
The number of contact points between a wire of layer (i) and wires of layer (i+1) over one lay length of 
layer (i) is given by Eq. (B.14), which can also be written in terms of lay lengths hi and hi+1 as follows: 
 

Cii 1 i
Cwi i 1 i 1

Ci i i 1

2 Rtan h
n 1 n 1 1 n 1

2 R tan h
+

+ +

+

      ′ πα
= + + = + +      

′π α      
  (B.19) 

 
 Using the present notations, corresponding Eq. (6) of Rawlins’ paper may be written as follows: 
 

i
Cwi i 1

i 1

h
n n 1

h+

+

 
== + 

 
       (B.20) 

 
Apart from the floor brackets, it differs by 1 with Eq. (B.19). It is recalled this term has been justified 
above by the fact there is one more contact point than intervals between such points.  
 
Also, the total contact points per unit length between layers (i) and (i+1), given by Eq. (B.18) may be 
compared with Rawlins’ Eq. (10). Using the present notations, this equation may be written as follows: 
 

Cui i i 1
i i 1

1 1
n n n

h h+

+

 
= + 

 
      (B.21) 

 
Apart from the floor brackets, Eqs (B.18) and (B.21) differ by a term i in h  which comes from the one 

contact point difference mentioned above. It may or may not be considered as negligible, depending on 
the number of wires in layers (i) and (i+1). 
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Example B.3 
 
Data for the conductor Bersimis ACSR are found in Appendix A. Compare the number of contact 
points between layers (1) and (2). 
 
From Appendix A : 1 2 1 2n 20 n 14 h 0.380 m h 0.299 m= = = = . 

 
Results: 
Eq. (B.18) yields:  1

Cu1n 1720 m−=  

Eq. (B.21) yields:  1
Cu1n 1673 m−= , a 2.7% difference. 

 
Now, consider layers (3) and (4) with 3 4 3 4n 8 n 6 h 0.258m h 0.171m= = = =  

Eq. (B.18) yields:  1
Cu3n 496 m−=  

Eq. (B.21) yields:  1
Cu3n 466 m−= , a 6% difference. 

 
 
B.3 A TRIGONOMETRIC IDENTITY 
 
In the calculation of the complementary bending stiffness of a single layer, and also in a multi-layer 
strand, one encounters the following summation, resulting from the contribution of the n wires of a 

given layer: 
n

2
n n

k 1

2
sin k with

n=

π
θ θ =∑ . It can be shown the summation can easily be obtained from the 

following identity: 
 

n
2

n
k 1

n
sin k

2=

θ =∑        (B.22) 

 
(Here, we dispense with noting ni, the number of wires in layer (i)). 
 
Papailiou (1995) has given a proof of identity (B.22). We propose the following approach based on the 
complex number geometrical representation in the Argand-Gauss plane. First, recall the identity: 
 

2 1
sin (1 cos 2 )

2
θ = − θ        (B.23) 

 
Thus: 

n n n
2

n n n
k 1 k 1 k 1

1 n 1
sin k (1 cos 2k ) cos 2k

2 2 2= = =

θ = − θ = − θ∑ ∑ ∑   (B.24) 

 
Consider now the second term in the right-hand side. It is the real part of the exponential analytic 
function ni(2k )e θ . In the complex plane, it is represented by a vector joining the origin to a point on the 

unit circle. This vector makes an angle n

2
2k 2k

n

π
θ = θ =  with the real axis. Thus, the sum n

n
i(2k )

k 1

e θ

=

∑  

may be considered as the sum of n unit vectors making equal angles. 
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If the number n of wires in a layer is even (the usual case), the n vectors reduce to n/2 vectors making a 
4 nπ  angle (Fig. 3, with n = 12). The sum of these vectors is clearly the null vector, which means both 

the real and the imaginary parts of n

n
i(2k )

k 1

e θ

=

∑  are zero. The second term of Eq. (B.24) right-hand side 

vanishes, and Eq. (B.22) is proved. 
 

If the number n is odd, it is easy to check that the n terms in the sum n

n
i(2k )

k 1

e θ

=

∑  are represented by n 

distinct vectors making a 2 nπ angle, and the same result holds. 

 
 

Figure B. 3 Example : n = 12, n 3θ = π  

 

k=1 and 7 k=2 and 8 

k=3 and 9 

k=4 and 10 k=5 and 11 

k=6 and 12 
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APPENDIX C 

 

 

RHEOLOGICAL MODEL FOR A MULTILAYER CONDUCTOR IN BENDING 

 

 

C.1 INTRODUCTION 
 
It is shown in Chapter 3 that the moment-curvature diagram of a multilayer conductor in bending may 
be adequately represented by a polygonal line. This linearization eliminates the slip propagation phases 
and assumes slip of one layer on the adjacent one takes place instantaneously. 
 
In such linearized diagram, the slope of the first segment (which starts at the origin) is B0 = Bmax, the 
conductor maximum bending stiffness, which is obtained by assuming strands behave as in a solid bar, 
with zero slip at contact points. When the imposed curvature reaches value κm,1 , the first layer slips on 
the adjacent one. Symmetry conditions impose zero displacement at points located on the extrados 
(convex side) and intrados (concave side) of the bent conductor. Slip allows a small displacement of 
strand material from the compression zone to the tension zone. Beyond this value of curvature, slope of 
the second segment is B1, which applies up to curvature κm,2 etc. This slope is the conductor tangential 
stiffness. When layer (m) is also in the slip regime, slope becomes Bm = Bmin., obtained by assuming 
wires are completely free to bend independently from one another.  
 
For a given conductor, transition curvatures do depend on the imposed axial load T, on the coefficient 
of friction µi between layers, and also on the type of hypothesis which is made on the influence of outer 
layers on the inner ones. 
 
 
C.2 RHEOLOGICAL MODEL 
 
It has been shown in the single layer case, Chapter 2, that the (M vs κ) diagram could be linearized 
using a rheological model based on a system consisting of springs and sliders (Figs 2.8 and 2.9). The 
multilayer conductor case may be treated in the same way. For example, a four-layer conductor may be 
represented with the model shown in Fig. C.1. It is made of four spring-slider couples (SPi)-(SLi)  plus 
a single spring whose stiffness is k0 = Bmax the zero-slip stiffness of the conductor, when bending starts. 
Each slider (SLi) has a limit moment Mm,i below which it is rigid. Each spring (SPi) has a stiffness ki 
which is calculated as follows. 
 
When limit curvature κm,1 is reached, layer (1) slips, which means slider (SL1) is activated. As shown in 
Chapter 2, spring stiffness k1 is given by: 
 

1 1 0

1 1 1

k B B
= −         (C.1)  

 
When limit curvature κm,i is reached, slider (SLi) starts slipping. Total curvature is: 
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m,1 m,2 m,i

0 1 2 i

M M M M M MM

k k k k

− − −
κ = + + + +�    (C.2) 

 

Mm,1 

k0 

κ 

M 

0 κ 

M 

k1 k2 k3 k4 

Mm,2 Mm,3 Mm,4 

Mm,1 

Mm,2 

Mm,3 

Mm,4 

B0 

B1 

B2 

B3 

B4 

 

Figure C. 1 

 
The slope of the corresponding segment is given by : 
 

i

j 0i 0 1 2 i j

d 1 1 1 1 1 1

dM B k k k k k=

κ
= = + + + + =∑�     (C.3) 

yielding : 
i 1

j 0i i j

1 1 1

k B k

−

=

= −∑        (C.4) 

Which leads to the simpler equation : 
 

i i i 1

1 1 1

k B B −

= −        (C.5) 

 
Because of the sequential slip process, layer (i) slips after layer (i-1) and condition i i 1B B −<  is always 

satisfied. Thus, one has ik 0> . 

 
 
 
 
 



 

85 
 

Example C.1a 
 
Consider the Bersimis ACSR with the same hypotheses as in Example 3.7: uniform coefficient of 
friction between layers, µi = 0.7 ; axial load T = 30% RTS; slip conditions (SC5). In order to apply the 
above rheological model, determine each spring element stiffness ki (i = 0,…,4).  
 
Available Matlab® file : Example_C_1.m (case 1) 
Results: 
Stiffness Bi after layer (i) complete slip is (Example 3.7) 
B = [1.0842    0.2458    0.0828    0.0635] 109 N.mm2 
 
Spring element stiffness ki  (Eq. (C.5)) are : 

9 2
0 0 maxk B B 3.4832 10 N.mm= = = ×  (Example 3.1a) 

k = [1.5742   0.3179   0.1249   0.2724] 109 N.mm2 
 
Example C.1b 
 
Consider the Cardinal ACSR with the same hypotheses as in Example 3.8: uniform coefficient of 
friction between layers, µi = 0.7 ; axial load T = 40 kN; slip conditions (SC2). In order to apply the 
above rheological model, determine each spring element stiffness ki (i = 0,…,4).  
 
Available Matlab® file : Example_C_1.m (case 2) 
 
Results: 
Stiffness Bi after layer (i) complete slip is (Example 3.8) 
B = [6.8280  2.0612  0.7873  0.2775] 108 N.mm2 
 
Spring element stiffness ki  (Eq. (C.5)) are : 

9 2
0 0 maxk B B 1.7846 10 N.mm= = = ×  (Example 3.1b) 

k = [1.7846  1.1059  0.2952  0.1274  0.0429] 109 N.mm2 
 
 
C.3 APPLICATION OF RHEOLOGICAL MODEL 
 
The spring-slider model is particularly useful to study non-monotonous loadings such as those found in 
vibration. The properties of this model have been described in detail by Dowling (1993) in the context 
of elasto-plastic material behaviour. Some of these properties will be briefly summarized. It will be 
found that they lead to Papailiou’s results in his thesis (1995), which have been derived for the 
particular case of conductor bending. 
 
It is assumed a conductor has been imposed a monotonous curvature loading, up to complete slip of 
layer (i). On the (M vs κ) diagram, the conductor is at point A0 (M0,κ0), on segment (i), slope Bi. Then, 
assume the applied moment is slowly decreased. The sliders which had been activated are then blocked 
in their current position. The spring-slider couples (SPi)-(SLi) are again rigid and elongation κi in 
spring (SPi) is frozen. 
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0 κ 

M 

Mm,1 

Mm,2 

Mm,3 

Mm,4 

B1 

B0 

A0 

∆M=2Mm,1 

A2 

A4 

A5 

A3 

∆M=2Mm,2 

A1 

B1 

B0 

 

Figure C. 2 

Moment decrease ∆M affects only spring (SP0), leading to a curvature decrease ∆κ = ∆M/B0. Thus, the 
unloading curve is a straight line, with a slope B0. On couple (1), this moment unloading is entirely 
absorbed by the slider (as the spring elongation is maintained constant, as well as the corresponding 
moment M0-Mm,1). At any time, the force on the slider is m,1M M− ∆  and it remains rigid as long as the 

condition m,1 m,1M M M− ∆ <  is satisfied. Whenever ∆M = 2Mm,1, the slider is released and there is 

incipient slip in the opposite direction, which allows spring (SP1) to contract. In the conductor on which 
the imposed curvature is undergoing a decrease, this corresponds to a reverse slip of the outer layer 
(layer 1). The subsequent moment decrease follows a straight line with slope B1, up to the point where 
∆M = 2Mm,2  (Fig. C.2, point A3). Then, slider (SL2) is released, and the unloading curve is the straight 
line with slope B2. The same process will apply eventually to the other spring-slider couples. When 
∆M = M0 (point A2), the moment imposed onto the conductor vanishes. However, there is a residual, or 
permanent, curvature κ2. 
 
Now, assume that at point A4 (M4,κ4), for m,1 m,22M M 2M< ∆ < , moment M is increased. Slider (SL1) 

again becomes rigid and curvature variation comes from spring (SP0) only, and follows a B0 slope 
straight line. If moment variation amplitude is 0 4M M M∆ = +  (∆M being taken from the A4 level), 

slider (SL1) is unlocked, and the load diagram is now a B1 slope segment A5A0, back to the unloading 
point A0. The unload-load diagram is a closed cycle. As shown by Papailiou (1995), the area enclosed 
in this cycle corresponds to the dissipated energy from the friction forces. 
 
In a sustained vibratory motion, the load point follows a trajectory such as (A0A1A4A5A0) and the 
energy dissipated might be used to evaluate a damping factor. 
 
For small amplitude vibrations, the load-unload cycle is merely a segment A0A1, with slope B0. Thus, 
in principle, the cycle area vanishes, and such cyclic bending vibrations should correspond to zero 
damping. It is well known this is not the case. Damping is present, even at very small amplitudes.  
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Such deviation of the model with respect to the actual conductor behaviour arises from the fact it is 
based on a simple macroscopic expression of Coulomb’s law of friction. That is, it does not take into 
account the fact that, at contact points, which are contact regions, there always is some microslip 
occurring as soon as a tangential load is applied to the contacting bodies (here, the contacting strands), 
even when this tangential load is too small to induce gross slip between these bodies. This matter is 
quite important, as it is related to the fretting fatigue process, which often leads to conductor strand 
breaks.  
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APPENDIX D 

 

 

THE TRANSFER MATRIX METHOD (TMM) 
 

 

T 
P 

L/2 L/2 

A B C 

Bi 

li 

 

Figure D. 1 

 
Specimen AB is replaced with a series of beam elements, length li and bending stiffness Bi. Consider 
element (i) free-body diagram. In the present case, the only external loads are forces T and P, at nodes 
A, B, and C. Shear force has a constant value in AC and CB. 
 
 
D.1 EQUILIBRIUM EQUATIONS FOR ELEMENT (i) (2D PROBLEM) 
 
In order to obtain the general form of the equilibrium equations for a plane problem, the possible nodal 
forces and moments acting on nodes (i) and (i+1) are shown in Fig. D.2. Since only static cases are 
considered, there are no “inertia forces” on the element. 
 

 

Vi+1 

Mi+1 

Mi 

vi+1 

vi 

θi+1 

θi 

li 
xi 

xi+1 

Ni+1 

Vi Ni 

 

Figure D. 2 

 
For element (i), length li, node (i) displacement is vi, and rotation of the tangent of the bent element at 
the same node is θi. Nodal forces and moment are: normal force Ni, shear force Vi, and bending 
moment Mi. At node (i+1), corresponding components are (vi+1, θi+1, Ni+1, Vi+1, Mi+1). The three 
equilibrium equations are:  
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i 1 i 1 i 1 i 1 i i i i

i 1 i 1 i 1 i 1 i i i i

i 1 i i 1 i 1 i i 1 i 1 i i 1 i 1 i 1 i i 1 i 1 i 1 i

N cos V sin V sin N cos 0

N sin V cos V cos N sin 0

M M N sin V cos N cos (v v ) V sin (v v ) 0

+ + + +

+ + + +

+ + + + + + + + + + +

θ − θ + θ − θ =

θ + θ − θ − θ =

− + θ + θ − θ − + θ − =� �

 (D.1) 

 
 
The first two equations are used to simplify the moment equation, yielding: 
 

i 1 i i i i i i i i i i i i iM M N sin V cos N cos v V sin v+ = − θ − θ + θ ∆ − θ ∆� �    (D.2) 

 
where i i 1 iv v v+∆ = −  

 
Now, it is assumed angles θi and θi+1 are small, as are displacements (or, at least, the relative 
displacement ∆vi). This hypothesis yields: 
 

i 1 i 1 i 1 i i i

i 1 i 1 i 1 i i i

i 1 i i i i i i i i

N V V N

N V V N

M M N N v V

+ + +

+ + +

+

− θ ≅ − θ +

θ + ≅ + + θ

≅ − θ + ∆ −� �

     (D.3) 

 
 
D.2 TRANSFER MATRIX FOR ELEMENT (i) 
 
In order to use the TM method, equations have to be linear. Thus, variation of the normal force on the 
element, which depends on cosines of angles θi and θi+1, is assumed to be negligible. Thus: 
 

i i 1N N T+≅ ≅         (D.4) 

For a section located at abscissa x, between nodes (i) and (i+1), the bending moment M(x) is thus 
approximately (keeping Ni in the equation): 
 

i i i i i i i iM(x) M N (x x ) N (v(x) v ) V (x x )= − − θ + − − −     (D.5) 

 
In the case of a conductor, moment M(x) is the combination of two components. One comes from the 
elastic bending behaviour. The other comes from the friction residual moment Mrf,i (moment with 
respect to the section neutral axis, of strand residual axial force when the corresponding layer is in the 
slip phase). The classical beam bending equation between curvature and moment applies only to the 
elastic component. It yields: 
 

2

i i i rf ,i2

d v
B (x) B M(x) k M

dx
κ = = −      (D.6) 

 
in which ik sign(M)= . Indeed, the Mrf,i has to decrease the absolute value of M(x). Also, in the 

Fig. D.1 system, there is no ambiguity on the sign of the M(x) function for any element. In the 
inflexion point region, where such ambiguity could exist, there is obviously no slip, and no residual 
friction moment. 
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Thus, from Eq. (D.5) : 
 

i i i rf ,i i i i i i i i i i iB v N v (M M N v V x N x ) (N V )x′′ − = − − + + θ − θ +    (D.7) 

 
Residual friction moment Mrf,i will be assumed to be uniform in element (i). That is, the whole element 
is assumed to be in the same slip stage, as if having a uniform curvature. 
 
Now, Eq. (D.7) may be written in the simpler following form: 
 

2
i i iv v a b x′′ − λ = −         (D.8) 

 
where: 

2 i
i i i i rf ,i i i i i i i i i i i i

i i i

N 1 1
a (M k M N v V x N x ) b (V N )

B B B
λ = = − − + + θ = + θ   (D.9) 

 
One particular solution to Eq. (D.9) is: 
 

pi 1i 2iv (x) C C x= +         (D.10) 

where: 

i
1i i i rf ,i i i i i i i i2

i i

i i
2i i2

i i

a 1
C (M k M N v V x N x )

N

b V
C

N

= − = − − − + + θ
λ

= = + θ
λ

   (D.11) 

 
The complete solution to Eq. (D.8) may be written as follows: 
 

1i 2i 3i i 4i iv(x) C C x C sinh x C cosh x= + + λ + λ     (D.12) 

 
Constants C3i and C4i can be expressed using node (i) parameters vi, θi. After rearranging terms, one 
gets: 
 

i
3i i i rf ,i i i i i

i i i

i
4i i i rf ,i i i i i

i i i

V1
C (M k M )sinh x cosh x

N N

V1
C (M k M )cosh x sinh x

N N

= − − λ − λ
λ

= − λ + λ
λ

    (D.13) 

 
Similarly, node (i+1) parameters, vi+1, θi+1, are given by: 
 

i 1 1i 2i i 1 3i i i 1 4i i i 1

i 1 2i i 3i i i 1 i 4i i i 1

v C C x C sinh x C cosh x

0 C C cosh x C sinh x
+ + + +

+ + +

= + + λ + λ

θ = + + λ λ + λ λ
    (D.14) 

 
Using the classical hyperbolic sine and cosine identities, parameters vi+1, θi+1 may be expressed in 
terms of node (i) parameters vi, θi : 
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( ) ( )

( ) ( )

i i i
i 1 i i i i i i i i rf ,i

i i i i

i
i 1 i i i i i i i i rf ,i

i i

sinh 1
v v 1 V cosh 1 M k M

N N

1
0 cosh 1 V sinh M k M

N N

+

+

 λ
= + θ + − + λ − − 

λ 

λ
θ = + θ − λ − + λ −

� �
� �

�

� �

 (D.15) 

 
Also, looking at the linearized equilibrium equations D.3, it is found Vi+1 et Mi+1 may be expressed in 
terms of node (i) parameters: 
 

( )

( )

i 1 i i i i i i i i rf ,i

i i
i 1 i rf ,i i i i i i rf ,i

i

V cosh V sinh M k M

sinh
M k M V cosh M k M

+

+

= λ − λ λ −

λ
− = − + λ −

λ

� �

�
�

   (D.16) 

 
Thus, the four state variables ( )i 1 i 1 i 1 i 1v , ,V ,M+ + + +θ  at node (i+1) are seen to be linearly related to the 

corresponding variables at node (i) ( )i i i iv , ,V ,Mθ  through four equations D.15 and D.16. These 

equations may be written in matrix form as follows (Pilkey, 2002) : 
 

{ } [ ] { }i 1 ii
s U s

+
=        (D.17) 

 
 
Vectors { }i

s  et { }i 1
s

+
 are the value of the state vector at nodes (i) and (i+1), which is defined as:  

 

{ }

v

s V

M

1

 
 θ 
 =
 
 
  

        (D.18) 

 
and [ ]i

U  is the 5×5 transfer matrix of element (i) : 

 

[ ]

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35i

41 42 43 44 45

51 52 53 54 55 i

u u u u u

u u u u u

U u u u u u

u u u u u

u u u u u

 
 
 
 =
 
 
  

     (D.19) 

 
Matrix elements are: 
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( ) ( )

( )

11 22 55 21 31 32 41 42 51 52 53 54

i i i i
12 i 13 14 i i 15 i i rf ,i

i i i i i

i i i
23 i i 24 i i 25 i i rf ,i

i i i

33 i i 34

u u u 1 u u u u u u u u u 0

sinh k1
u u 1 u cosh 1 u cosh 1 M

N N N

k1
u cosh 1 u sinh u sinh M

N N N

u cosh u

= = = = = = = = = = = =

 λ
= = − = λ − = − λ − 

λ 

λ λ
= − λ − = λ = − λ

= λ = −

� �
� � �

�

� � �

�

( )

i i i 35 i i i i rf ,i

43 i i 44 i i 45 i i i rf ,i
i

sinh u k sinh M

1
u sinh u cosh u k cosh 1 M

λ λ = λ λ

= − λ = λ = − λ −
λ

� �

� � �

(D.20) 

 
In principle, it is thus possible to proceed sequentially from node (1) values, to node (2), and then node 
(3) etc. However, one parameter is unknown at the built-in end point A, which is the value of the end 
moment M1 = MA . The missing condition is found at center point C where, by symmetry, the 
vanishing slope yields (L 2) 0θ = . With n elements in the domain 0 x L 2≤ ≤ , a relationship between 

M1 et θn+1 has to be found. It is obtained through the product of the n matrices [ ]i
U . The resulting 

matrix [ ]U  is given by : 

[ ] [ ]
1

i
i n

U U
=

= ∏          (D.21) 

which has the form : 
 

[ ]

vv v vV vM v

v V M

Vv V VV VM V

Mv M MV MM M

u u u u f

u u u u f

U u u u u f

u u u u f

0 0 0 0 1

θ

θ θθ θ θ θ

θ

θ

 
 
 
 =
 
 
  

     (D.22) 

 
Thus, the sought for relation between node (1) and node (n+1) state variables is: 
  

{ } [ ]{ }n 1 1
s U s

+
=         (D.23) 

where : 

{ } { }

n 1 C 1

n 1 1

n 1 C 1n 1 1

n 1 C 1 A

v v 0

0 0

s sV V V P / 2

M M M M

1 1 1 1

+

+

++

+

δ       
       θ θ       
       = = = =
       
       
              

    (D.24) 

 
Thus, Eq. (D.23) yields : 
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C vV vM A v

V M A

C VV VM A V

C MV MM A M

P
u u M f

2
P

0 u u M f
2

P
V u u M f

2
P

M u u M f
2

θ θ θ

δ = + +

= + +

= + +

= + +

      (D.25) 

 
The second equation yields an expression for the built-in moment MA : 
 

V
A

M M

f u P
M

u u 2
θ θ

θ θ

= − −        (D.26) 

 
Replacing MA in the first equation yields an expression for the center point deflection δC : 
 

V vM
C vV vM v

M M

u uP
u u f f

u 2 u
θ

θ

θ θ

 
δ = − − + 

 
    (D.27) 

 
 
D.3 MONOTONOUSLY INCREASING TRANSVERSE FORCE P 
 
In order to obtain the δC vs P curve (or, equivalently, P vs δC), one should evaluate the matrix [ ]i

U  for 

each element and take the product [ ]U  as in Eq. (D.21). Once the elements of matrix [ ]U  are known, 

deflection δC is found from Eq. (D.27). 
 
The difficult part is in finding the [ ]i

U  matrices, since they depend on which slip phase is the 

corresponding element. As slip propagates from points A and C, an increment method has to be used. 
Starting from P = 0, the transverse force is increased by steps ∆P. After each increment, boundaries 
between slip zones are found and bending stiffness Bi for each element is determined from the uniform 
curvature bending diagram of the conductor. With stiffness Bi , the element transfer matrix [ ]i

U  is 

found. 
 
Because the element properties vary during the loading process, one has to analyze the conductor 
specimen deflection step by step. At each level of loading, P, one has to determine the slip stage of 
each element. Then, using the corresponding stiffness, calculate the supplementary deflection from the 
load increment ∆P. These deflection and moment increments are then added to their current values and 
element slip stages are then updated. 
 
The algorithm should check first what is the limit force P1 for which outer layer slip starts. If Pmax > P1 , 
the deflection at P = P1 is easily obtained which provides the initial value of deflection vi as well as 
node moments Mi . From this level on, the calculation has to proceed step by step. 
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At a given stage, stiffness matrices [ ]i
U  are known, as well as their product [ ]U . The increments 

{ }i
s∆  and ∆δC arising from ∆P can be calculated from Eq. (D.27). Vectors { }i

s  are then updated, as 

well as the [ ]i
U  element matrices. 

 
 
D.4 TAKING INTO ACCOUNT NORMAL FORCE N VARIATION 
 
Because of the slope of the bent specimen, normal force N varies slightly when the axial force applied 
at the end B is kept a constant T. Thus, in the TMM, a corrected value may be used in the following 
way. 
 
Element (i) transfer matrix is first determined with value Ni = T. Then, new values are found for each 
element, starting with N1 = T, using the first equilibrium equation in Eqs (D.3) (the last two are used to 
determine Mi+1): 
 

i 1 i i 1 i 1 i iN N V V+ + += + θ − θ       (D.28) 

 
After the first iteration, parameters (θi,Vi) have been found. Starting at node (1), where N1 = T, and 
using Eq. (D.28), a corrected value of Ni can be obtained in each element. This value can be used in the 
next load increment to calculate the current [ ]i

U  stiffness matrices. 

 
 
D.5 APPLICATION: CURVE P vs δC FROM Example 4.5 
 

 

Figure D. 3 

Example 4.5 – P vs δC 
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